

Smart Revision Calendar and Timetable

Android Application

Author

Russell Waterson

Student ID

1330057

Supervisor

Uday Reddy

Degree Course

B.Sc. in Computer Science

Institution

School of Computer Science

University of Birmingham

Date

13th April 2017

1 TABLE OF CONTENTS

2 Acknowledgments .. 4

3 Abstract .. 4

4 Introduction ... 5

5 Background Research .. 6

5.1 Fixed Scheduling and Learning Styles .. 6

5.2 Current Solutions ... 6

6 Analysis and Specification ... 8

6.1 Survey .. 8

6.2 Use Cases ... 9

6.3 Functional Requirements .. 13

6.4 Non-Functional Requirements .. 14

6.5 Risk Review .. 15

7 Technological Requirements ... 16

7.1 Proposed solution ... 16

7.1.1 Android Mobile Application ... 16

7.1.2 Alternative Options .. 16

7.1.3 Overview of Android Programming ... 16

7.2 Integrated Development Environment (IDE) .. 17

7.2.1 Android Studio IDE ... 17

7.2.2 Alternative Options .. 17

7.3 Programming Language ... 18

7.3.1 Java .. 18

7.3.2 Alternative Options .. 18

7.3.3 XML .. 18

7.4 Hardware ... 18

7.4.1 Development Device .. 18

7.4.2 Testing Device .. 19

7.5 Version Control .. 19

7.5.1 Git .. 19

7.5.2 Alternative Options .. 20

7.6 Target Platform ... 20

8 Design and Implementation .. 21

8.1 Database Management System .. 21

8.2 Javadoc .. 22

8.3 Package Management ... 23

8.4 Key Components ... 23

8.4.1 Initial Start-up .. 23

8.4.2 Main Screens ... 24

8.4.3 Timetable Views .. 24

8.4.4 Database Queries .. 24

8.4.5 The Smart System .. 25

8.4.6 Debriefs .. 26

8.4.7 Cloud Backups.. 27

8.4.8 Import Google Calendar .. 27

8.4.9 Mute Phone ... 28

8.4.10 Settings .. 28

8.4.11 String Resource File ... 28

9 User Interface ... 29

9.1 Material Design ... 29

9.2 Sketches ... 29

9.3 Wireframes .. 30

9.4 Final GUI .. 30

9.4.1 Initial Start-up .. 31

9.4.2 Main Screens ... 34

9.4.3 Timetable Views .. 34

9.4.4 Database Queries .. 35

9.4.5 Smart Data .. 37

9.4.6 Debriefs .. 38

9.4.7 Cloud Backups.. 38

9.4.8 Import Google Calendar .. 38

9.4.9 Mute Phone ... 39

9.4.10 Settings .. 39

9.5 App Icon ... 40

10 Testing .. 41

10.1 Unit Testing ... 41

10.2 Instrument Espresso Testing ... 41

10.3 Functional Testing ... 41

10.4 UI and Application Exerciser Monkey ... 49

10.5 Performance Testing ... 49

10.6 Acceptance Testing – Alpha Testing .. 50

10.7 Bug Report ... 50

11 Project Management .. 51

11.1 Software Engineering Process ... 51

11.2 Version Control .. 51

11.3 Supervisor Meets... 52

11.4 Project Issues ... 52

12 Results and Evaluation .. 53

12.1 Public Release .. 53

12.2 Comparison to Original Specification .. 53

12.3 User Feedback ... 54

12.3.1 Reliability and Robustness ... 54

12.3.2 Performance .. 54

12.3.3 Heuristic Evaluation ... 54

12.4 Lessons Learned .. 55

13 Discussion ... 56

13.1 Achievements .. 56

13.2 Deficiencies ... 56

13.3 Further Development .. 56

14 Conclusion .. 57

15 References .. 58

16 Appendices ... 61

A Structure of project ZIP ... 61

B Class Diagram .. 62

C Gantt Chart .. 63

D Unit Tests ... 64

Russell Waterson 1330057

4 | P a g e

2 ACKNOWLEDGMENTS

I would firstly like to thank my supervisor Uday Reddy for supervising my project, and secondly a big

thank you to Russell Beale, the project coordinator, for answering and dealing with any queries and

problems I faced.

I wish to extend this thanks to my assessment team, Hayo Thielecke and Alan Sexton, as well as all

those who took part in my testing and questionnaires, giving me vital feedback and enabling me to

improve project.

Also, thanks must go to StepStone Tech and Alam Kanak, the authors of Third Party Libraries used in

this project.

3 ABSTRACT

The proposed project is to create a smart revision timetable and calendar Android application. This

mobile application is targeted towards students and will allow them to create a work and revision

timetable with minimal effort. The premise is, the user enters various inputs, including their class

times, extracurricular activities, exams and deadlines, and their preferred style of learning and

working. The application will then generate a revision timetable around the classes and activities

with the exams as goals to work towards based on their given priority. In addition, the user also has

the opportunity to provide feedback on how productive they have been at the end of each day of

revision. This feedback, coupled with the user’s learning style, means that the more the user uses the

system, the more the timetable will learn and be tailored to that individual user.

All code for this project can be found at this GIT repository:

https://git-teaching.cs.bham.ac.uk/mod-40cr-proj-2016/rjw357

Keywords: Android Development, Academic Aid, Timetable Generation, Probabilistic Algorithm

https://git-teaching.cs.bham.ac.uk/mod-40cr-proj-2016/rjw357

Russell Waterson 1330057

5 | P a g e

4 INTRODUCTION

There are various studies that have been conducted proving that using a timetable and having self-

imposed deadlines can have a positive impact on self-control and task performance. The aim of the

work described in this report was to provide a software tool, in the form of an Android mobile

application, in which to assist people, in particular students, with the creation of revision and work

timetables in order to increase productivity.

There are a number of other factors that can affect one’s peak performance, these include time of

day, and length of working hours with consistency of breaks. Further study into various learning

methods and techniques, circadian rhythm, and mental stamina, all demonstrate the effects of

productivity and performance in work. The proposed system aims to provide additional benefits in

the form of smart features, whereby, for example, the system generates revision slots for the user

based on what should be prioritised, along with their preferred learning style.

The inspiration of this project comes from the desire to maximise productivity within exam seasons,

where timetable creation is a beneficial however time costly process. At the time of writing, there

are currently no intelligent revision timetables in existence, and therefore the proposed project aims

to add significant value to this field.

A user with say three exams in quick succession one after another, may be struggling to decide what

to revise for and when. The system aims to evaluate the work required for each exam, along with the

user’s style of learning, and determine the perfect revision schedule to maximise productivity for

that user, whilst avoiding clashes with their other activities.

The system achieves the proposed goals by using a two-part probabilistic algorithm, taking data from

a number of tables within a locally stored SQL database, one of which containing constantly evolving

data.

The system adopts a user interface which is developed to meet Ben Shneiderman’s “Eight Golden

Rules of Interface Design” and Jakob Nielsen's “Usability Heuristics for User Interface Design”,

ensuring a productive and frustration-free interface. This was attained aided by the use of Google’s

Material Design Guidelines, an established visual design language created by Google.

The system underwent rigorous and extensive testing and evaluation to ensure that the developed

solution was of the highest quality, adopting multiple techniques including black box and white box

testing methods, Android specific testing tools, and user investigative evaluation.

The project compromised of four main phases; research, implementation, testing, and evaluation,

each of which can be broken down further and are outlined in finer detail within this report.

Russell Waterson 1330057

6 | P a g e

5 BACKGROUND RESEARCH

5.1 Fixed Scheduling and Learning Styles
A study undertaken by Dan Ariely and Klaus Wertenbroch, examines the effects of self-control by

precommitment, and looks to answer a range of questions including whether self-imposed deadlines

are effective in improving task performance. The study requires students at MIT to undertake three

short papers, half of whom had fixed deadlines at regular intervals, and the other half of whom had

one deadline for all three at the end of term, and were asked to work under their own volition and

set their own deadlines. It was concluded that in addition to the students with deadlines achieving

higher grades, they also attained secondary benefits in other aspects of performance that required

the investment of their time as a resource (Ariely and Wertenbroch, 2002).

Cal Newport, a computer science professor at Georgetown University, uses the findings outlined in

the above study to create his own method of working that allows for completion of a large amount of

work in a small number of work hours; he calls it Fixed Schedule Productivity. In essence, it involves

choosing a schedule of work hours that provides an ideal balance of effort and relaxation, and then

doing whatever it takes to avoid violating that schedule (Newport, 2008). The aim is that once there

is a specific goal that can be focused on, the strategies become easier to deploy (Newport, 2008).

It is evident that the use of timetables is greatly beneficial, however even with a fixed schedule,

every individual has their own preferred style of learning. One such method that has been taught to

individuals and teams since 1998, is called the Pomodoro Technique. The Pomodoro Technique,

developed by Francesco Cirillo in 1992, is a time management technique used to break up working

into smaller intervals with frequent, but short, breaks. Usually this would consist of 25 minutes of

solid uninterrupted work, followed by a 5 minute break, which is then repeated four times, until a

longer break can be had (Cirillo, 2007). It aims to improve productivity by boosting motivation and

keeping it constant.

In addition to work and break lengths, individuals may find that the time of day in which work takes

place, to have a varying impact on their productivity. A study by Nolan G. Pope, looks to identify how

the time of day affects productivity. He deduces that there are definitive time-of-day differences in

productivity, where simply rearranging when tasks are performed can allow for greater efficiency

gains. Using students as test data, he concludes that despite adolescents having a roughly two hour

later circadian rhythm that adults, productivity in students on average is higher in the mornings than

the afternoon; believed to mainly be due to the structure of the working day, as well as stamina, the

lack thereof resulting in physical fatigue, mental fatigue, and drowsiness (Pope, 2016).

5.2 Current Solutions
Currently, an application does not exist that tackles the exact problem proposed, being a smart, self-

generating revision timetable, catering to the needs of an individual’s learning style. There does

however exist alternative implementations of standard timetables, without the use of smart

features.

The most common approach, is to create a handwritten timetable, whereby the user simply writes

out by hand what they want to achieve and by when. The advantage of this, is the unlimited

freedom, in regards to the design and layout that the user has; conversely, this approach comes with

many disadvantages. Plans are constantly changing, especially concerning revision, and the difficulty

that comes with the altering and editing of a handwritten approach can be crippling. Further to this,

Russell Waterson 1330057

7 | P a g e

the lack of ubiquitous availability means that the created timetable is not always to hand, meaning

that a change of location can lead to not knowing what should be revised when. And finally, hand

written timetables are extremely time costly in terms of their creation, time being a precious

commodity in the exam season.

Moving to an electronic approach, there are many software packages available to create timetables

with, all without any smart features however, for example the commonly used Microsoft Excel. While

this program is easy to use and intuitive, it too comes with the burden of a time costly creation of

any meaningful timetable.

The proposed implementation aims to alleviate all above drawbacks, thus hopefully encouraging

more people to adopt this to aid their revision.

Russell Waterson 1330057

8 | P a g e

6 ANALYSIS AND SPECIFICATION

6.1 Survey
Once the proposal and overarching theme of the project had been established, the core user

requirements had to be identified and documented. During this inception of requirements

fabrication, there were a significant number of different directions and priorities in which the project

could take in terms of feature set. In order to get a true reflection of what potential users would

want from an application such as the one proposed, a data gathering technique had to be adopted.

Upon reviewing advantages and disadvantages of a vast range of techniques, including interviews,

focus groups, observation, and cultural probes, the decision was made to create and distribute a

survey.

A survey is a practical requirements gathering tool that allows for the distinguishing of the attitudes,

values, and opinions of the participants, as well as their likes and dislikes. The biggest advantage with

using surveys and questionnaires, is that with minimal effort, data can be collected from a large

number of participants. Once the set of questions have been created, they can be distributed in a

wide variety of ways, including email, via a web-based provider, or simply by paper. The individual

data that is retrieved, is then easily compared with other participant’s data as it, and the questions,

are structured. Further to this, surveys can incorporate a mixture of both quantities and qualitative

data. The former being via the use of closed questions, for example check boxes, ranges, and Likert

scales. And the latter in the form of open questions.

The survey for this project was created and distributed using the online survey creation software,

SurveyMonkey, of which can be viewed via the link provided in the project zip file, as explained in

Appendix A. Once the survey had been in circulation of a suitable period of time, the results were

collected and with the omission of qualitative data, are as followed.

Q1) What stage of study are you currently at?

Postgraduate Undergraduate Sixth Form /
College (A Levels)

Secondary School
(GCSEs)

Other (Please
specify)

6 – 12.5% 38 – 79.17% 0 – 0% 0 – 0% 4 – 8.33%

Q2) When revising for exams, do you create a revision timetable for yourself?

Yes No (Proceed to question 5) Sometimes

18 – 37.5% 18 – 37.5% 12 – 25%

Q3) Do you feel that having a revision timetable helps you to be more productive when revising?

Yes No Sometimes

26 – 86.67% 2 – 6.67% 2 – 6.67%

Q4) How beneficial would it be to you, in having a computer program or mobile app to
automatically and intelligently generate a timetable for you instead of creating your own? (Upon
completion, proceed to Q7)

Very Beneficial Mildly Beneficial No Difference Mild Hindrance Large Hindrance

12 – 40% 14 – 46.67% 2 – 6.67% 0 – 0% 2 – 6.67%

Q5) Do you feel that having a revision timetable would help you to be more productive when
revising?

Yes No Unsure

15 – 83.33% 1 – 5.56% 2 – 11.11%

Q6) How beneficial would it be to you, in having a computer program or mobile app to
automatically and intelligently generate a timetable for you?

Very Beneficial Mildly Beneficial No Difference Mild Hindrance Large Hindrance

7 – 38.89% 9 – 50% 0 – 0% 0 – 0% 2 – 11.11%

Russell Waterson 1330057

9 | P a g e

Q7.1) In a timetable or calendar, how important to you are the following features? – Being able
to view the timetable on multiple devices

Very Important Mildly Important Mildly Unimportant Very Unimportant

18 – 42.86% 20 – 47.62% 4 – 9.52% 0 – 0%

Q7.2) In a timetable or calendar, how important to you are the following features? – Having a
printable format available

Very Important Mildly Important Mildly Unimportant Very Unimportant

20 – 47.62% 12 – 28.57% 6 – 14.29% 4 – 9.52%

Q8.1) How much do you feel these extra features can help you to increase productivity of
revision? – Gamification and mini incentives

High increase in
productivity

Slight increase in
productivity

No change Slight decrease in
productivity

High decrease in
productivity

16 – 38.10% 20 – 47.62% 4 – 9.52% 2 – 4.76% 0 – 0%

Q8.2) How much do you feel these extra features can help you to increase productivity of
revision? – Social Aspects

High increase in
productivity

Slight increase in
productivity

No change Slight decrease in
productivity

High decrease in
productivity

4 – 9.52% 18 – 42.86% 6 – 28.57% 4 – 19.05% 0 – 0%

Q8.3) How much do you feel these extra features can help you to increase productivity of
revision? – Muting phone during revision periods

High increase in
productivity

Slight increase in
productivity

No change Slight decrease in
productivity

High decrease in
productivity

24 – 57.14% 10 – 23.81% 8 – 19.05% 0 – 0% 0 – 0%

6.2 Use Cases
Using the response and feedback from the survey outlined in section 6.1, a series of use cases was

developed. A use case is a means of capturing requirements of a system by specifying how a user of

the system, the Actor, interacts with a detailed instance and its emergent behaviour (Anonymous

2015).

A use case is written as natural language statements that are understandable by non-developers, for

example any business-related people involved in the project. Along with the normal case step, an

alternative case and an exception case can be specified. The alternative case is when the user may be

granted with a choice of possible actions (Robertson and Robertson 2006). The exception case is an

undesirable but acceptable variation from the normal case (Robertson and Robertson 2006).

Case Actor Basic Flow

1 User The user opens application for the first time; the system displays initial start-up process
welcoming the user and explaining the major features of the system. The user
navigates through each step entering data accordingly.
Exception case 1.1: The user enters invalid data into the learning style, so the system
alerts the user with a validation error.

2 User The user selects the classes screen; a list of all classes is displayed. The user selects to
add a new class; the add a new class screen is displayed. The user enters class data and
presses save; the class is added to the system. The user is back on the classes screen;
the new class is displayed in the list of classes.
Alternative case 2.1: The user enters class data but presses back; the class is not added
to the system. The user is back on the classes screen; the new class is not displayed in
the list of classes.
Exception case 2.1: The user enters invalid class data and pressed save; the system
displays an error message informing the user of the invalid data.

Russell Waterson 1330057

10 | P a g e

3 User The user selects the classes screen; a list of all classes is displayed. The user selects a
displayed class; a screen is displayed showing all the information about the class. The
user selects the edit icon; the edit class screen is displayed. The user enters class data
and presses edit; the class fields are updated. The user is back on the classes screen;
the class is displayed with the updated data.
Alternative case 3.1: The user enters class data but presses back; the class is not
edited. The user is back on the classes screen; the class’s data remains the same.
Exception case 3.1: The user enters invalid class data and pressed edit; the system
displays an error message informing the user of the invalid data.

4 User The user selects the classes screen; a list of all classes is displayed. The user selects a
displayed class; a screen is displayed showing all the information about the class. The
user selects the delete icon; a message is displayed asking the user if they are sure. The
user presses yes; the class is removed from the system. The user is back on the classes
screen; the class is no longer present in the displayed list.
Alternative case 4.1: The user presses no; the class is not deleted. The user is back on
the classes screen; the class is still present in the displayed list.

5 User The user selects the activities screen; a list of all activities is displayed. The user selects
to add a new activity; the add a new activity screen is displayed. The user enters activity
data and presses save; the activity is added to the system. The user is back on the
activities screen; the new activity is displayed in the list of activities.
Alternative case 5.1: The user enters activity data but presses back; the activity is not
added to the system. The user is back on the activities screen; the new activity is not
displayed in the list of activities.
Exception case 5.1: The user enters invalid activity data and pressed save; the system
displays an error message informing the user of the invalid data.

6 User The user selects the activities screen; a list of all activities is displayed. The user selects
a displayed activity; a screen is displayed showing all the information about the activity.
The user selects the edit icon; the edit activity screen is displayed. The user enters
activity data and presses edit; the activity fields are updated. The user is back on the
activities screen; the activity is displayed with the updated data.
Alternative case 6.1: The user enters activity data but presses back; the activity is not
edited. The user is back on the activities screen; the activity’s data remains the same.
Exception case 6.1: The user enters invalid activity data and pressed edit; the system
displays an error message informing the user of the invalid data.

7 User The user selects the activities screen; a list of all activities is displayed. The user selects
a displayed activity; a screen is displayed showing all the information about the activity.
The user selects the delete icon; a message is displayed asking the user if they are sure.
The user presses yes; the activity is removed from the system. The user is back on the
activities screen; the activity is no longer present in the displayed list.
Alternative case 7.1: The user presses no; the activity is not deleted. The user is back
on the activities screen; the activity is still present in the displayed list.

8 User The user selects the exams screen; a list of all exams is displayed. The user selects to
add a new exam; the add a new exam screen is displayed. The user enters exam data
and presses save; the exam is added to the system. The user is back on the exams
screen; the new exam is displayed in the list of exams.
Alternative case 8.1: The user enters exam data but presses back; the exam is not
added to the system. The user is back on the exams screen; the new exam is not
displayed in the list of exams.
Exception case 8.1: The user enters invalid exam data and pressed save; the system
displays an error message informing the user of the invalid data.

Russell Waterson 1330057

11 | P a g e

9 User The user selects the exams screen; a list of all exams is displayed. The user selects a
displayed exam; a screen is displayed showing all the information about the exam. The
user selects the edit icon; the edit exam screen is displayed. The user enters exam data
and presses edit; the exam fields are updated. The user is back on the exams screen;
the exam is displayed with the updated data.
Alternative case 9.1: The user enters exam data but presses back; the exam is not
edited. The user is back on the exams screen; the exam’s data remains the same.
Exception case 9.1: The user enters invalid exam data and pressed edit; the system
displays an error message informing the user of the invalid data.

10 User The user selects the exams screen; a list of all exams is displayed. The user selects a
displayed exam; a screen is displayed showing all the information about the exam. The
user selects the delete icon; a message is displayed asking the user if they are sure. The
user presses yes; the exam is removed from the system. The user is back on the exams
screen; the exam is no longer present in the displayed list.
Alternative case 10.1: The user presses no; the exam is not deleted. The user is back on
the exams screen; the exam is still present in the displayed list.

11 User The user selects the timetable screen; the previously viewed timetable view is
displayed. The user selects the day view; the day timetable view is displayed. The user
swipes left and right; the current day is changed backwards and forwards respectively.
The user swipes up and down; the current time is changed earlier and later
respectively.
Alternative case 11.1: The user selects the week view; the week timetable view is
displayed. The user swipes left and right; the current week is changed backwards and
forwards respectively. The user swipes up and down; the current time is changed
earlier and later respectively.
Alternative case 11.2: The user select the month view; the month timetable view is
displayed. The user swipes left and right; the current month is changed backwards and
forwards respectively.

12 User The user selects the smart revision settings; the smart revision settings screen is
displayed. The user activates Smart Calendar features and selects to generate revision;
the system generates revision based on the learning style and other data, and then
gives the user the option to keep the old revision, keep the new revision, or view the
difference between them. The user clicks to view the difference; a screen is displayed
with a side-by-side comparison of the old and new revision. The user clicks to keep the
new revision; the system deletes the old revision. The user returns to the timetable
screen; the timetable is displayed populated with all the newly generated revision.
Alternative case 12.1: The user clicks to keep the old revision; the system deletes the
new revision. The user returns to the timetable screen; the timetable is displayed
populated with all the previously existing revision.
Alternative case 12.2: The user activates Smart Calendar features and selects to
generate revision for the first time; the system generates revision based on the learning
style and other data. The user returns to the timetable screen; the timetable is
displayed populated with all the newly generated revision.
Exception case 12.1: The user selects to generate revision; the system displays an error
message warning the user that the smart revision features are not activated.
Exception case 12.2: The user selects to generate revision; the system displays an error
message warning the user that no exams have been entered into the system.

13 User The user selects on a revision block from a timetable screen; a screen is displayed
showing all the information about the revision block. The user selects the edit icon; the
edit revision screen is displayed. The user enters revision data and presses edit; the

Russell Waterson 1330057

12 | P a g e

revision fields are updated. The user is back on the timetables screen; the revision is
displayed with the updated data.
Alternative case 13.1: The user enters revision data but presses back; the revision block
is not edited. The user is back on the timetable screen; the revision’s data remains the
same.
Exception case 13.1: The user enters invalid revision data and pressed edit; the system
displays an error message informing the user of the invalid data.

14 User The user selects on a revision block from a timetable screen; a screen is displayed
showing all the information about the revision block. The user selects the delete icon; a
message is displayed asking the user if they are sure. The user presses yes; the revision
block is removed from the system. The user is back on the timetable screen; the
revision block is no longer present.
Alternative case 14.1: The user presses no; the revision block is not deleted. The user is
back on the timetable screen; the revision block is still present.

15 User The user selects the backup option; the backup screen is displayed. The user selects the
account they wish to backup to; the system establishes a connection to the selected
Google Drive account. The user selects to backup the generated text file; the generated
text file is saved to the account. The user selects to backup the database file; the
database file is saved to the account.
Alternative case 15.1: The user selects not to backup the generated text file; the
generated text file is not saved to the account.
Alternative case 15.2: The user selects not to backup the database file; the database
file is not saved to the account.
Exception case 15.1: The user selects the account they wish to backup to; the system
cannot establish a connection to the selected Google Drive account, so an error
message is displayed giving the reason.

16 User The user selects the import Google Calendar Events option; the import events screen is
displayed. The user selects the account they wish to import from; the system
establishes a connection to the selected Google Calendar account. The user enters how
many events they wish to search for; the system searches for the entered number of
events. The user selects which events to import and presses save; the system imports
selected events and adds them to the system. The user is back on the timetables
screen; the newly imported events are shown in the timetable.
Exception case 16.1: The user selects the account they wish to import from; the system
cannot establish a connection to the selected Google Calendar account, so an error
message is displayed giving the reason.
Exception case 16.2: The user enters an invalid number for how many events they wish
to search for; the system displays an error informing the user the correct range in
which to search for events.

17 User The user selects on an imported event from a timetable screen; a screen is displayed
showing all the information about the event. The user selects the delete icon; a
message is displayed asking the user if they are sure. The user presses yes; the event is
removed from the system. The user is back on the timetable screen; the event is no
longer present.
Alternative case 17.1: The user presses no; the event is not deleted. The user is back on
the timetable screen; the event is still present.

18 User The user selects the settings screen; the settings screen is displayed. The user activates
the phone muting during revision hours; the system activates the triggers to turn on
and turn off the muting of the phone.
Alternative case 18.1: The user deactivates the phone muting during revision hours;
the system deactivates the triggers to turn on and turn off the muting of the phone.

Russell Waterson 1330057

13 | P a g e

6.3 Functional Requirements
From the collection of use cases outlined in section 6.2, a set of functional requirements could be

established. Functional requirements are a type of specification, independent of any technology used

by the product, explaining what the system must do, and the procedures to be carried out

(Robertson and Robertson 2006). The functional requirements are derived from the use cases by

asking what the system must do in order to complete each step. Below is an extensive list of

functional requirements for the proposed system.

Intro screen: so that the user can be introduced to the application

- The product should display information about major features of the app on first time boot

- The product should display instructions on how to operate the app on first time boot

Class: so that the user can manipulate data about their classes and lectures

- The product should allow the user to add a new class into the system

- The product should prevent the user from entering a new class with invalid data

- The product should allow the user to view all the classes in the system

- The product should allow the user to edit previously entered classes in the system

- The product should prevent the user from editing an existing class to have invalid data

- The product should allow the user to delete an existing class from the system

Activity: so that the user can manipulate data about their extracurricular activities

- The product should allow the user to add a new activity into the system

- The product should prevent the user from entering a new activity with invalid data

- The product should allow the user to view all the activities in the system

- The product should allow the user to edit previously entered activities in the system

- The product should prevent the user from editing an existing activity to have invalid data

- The product should allow the user to delete an existing activity from the system

Exam: so that the user can manipulate data about their exams

- The product should allow the user to add a new exam into the system

- The product should prevent the user from entering a new exam with invalid data

- The product should allow the user to view all the exams in the system

- The product should allow the user to edit previously entered exams in the system

- The product should prevent the user from editing an existing exam to have invalid data

- The product should allow the user to delete an existing exam from the system

Timetable: so that the user can view all the events in the system in a presentable manner

- The product should display a day view timetable containing all the events in the system with

easy navigation between days

- The product should display a week view timetable containing all the events in the system

with easy navigation between weeks

- The product should display a month view timetable

Smart Revision and Data: so that the user can maintain their learning style and generate revision

- The product should allow the user to manually update their smart data and learning style

- The product should prevent the user from entering invalid learning data

- The product should allow the user to provide feedback per revision block via a debrief

- The product should allow the user to provide feedback per day in the form of a debrief

- The product should recommend updates to the learning style data based on the debriefs

- The product should generate revision slots based on learning style and all other inputs

- The product should allow the user to view the differences in data with newly generated

revision against existing revision that may be overwritten

Russell Waterson 1330057

14 | P a g e

Revision: so that the user can manipulate data about the generated revision

- The product should allow the user to view all the revision blocks in the system

- The product should allow the user to edit generated revision blocks

- The product should prevent the user from editing a revision block to have invalid data

- The product should allow the user to delete an existing revision block from the system

Backup: so that the user can backup their data

- The product should allow the user to connect the application to their Google Drive account

- The product should generate a text formatted version of the database to be backed-up

- The product should allow the user to backup the raw database file

Import Events: so that the user can import events from existing calendars

- The product should allow the user to connect the application to their Google Calendar

account

- The product should allow the user to import chosen events into the system

- The product should allow the user to view all the events in the system

- The product should allow the user to delete an imported event

Phone muting: so that distractions are minimised during revision

- The product should automatically mute the phone during working hours

- The product should automatically unmute the phone outside of working hours

6.4 Non-Functional Requirements
Non-functional requirements are the set of qualities the system has as well as how well it operates,

overseeing that the system performs in a particular way and to a high standard (Robertson and

Robertson 2006). These are outlined by set of criteria for which requirements are defined.

Look and Feel: The look and feel is not a detailed design of the interface, but instead looks to identify

objects within the appearance (Robertson and Robertson 2006).

- The product should comply with Google’s Material Design Guidelines

- The product should be consistent across a large number of display resolutions

Usability and Humanity: The usability requirements look to ensure the system conforms to varying

user’s levels of ability, expectations, and skill (Robertson and Robertson 2006).

- The product should be easy to use for students with varying levels of application interaction

experience

- The product should be easy to learn by a user on their first attempt

- The product should provide the preferred way of timetable creation

Performance Requirements: The performance requirements ensure that the system performs tasks

within a specific amount of time or to a given level of accuracy. It also covers capacity concerns, as

well as risk of damage to people or property (Robertson and Robertson 2006).

- The product should navigate between screens instantaneously

- The product should generate a set of new revision blocks within 5 seconds

- The product should have a capacity of at least 10,000 items across all tables in the database

- The product should not generate revision where the user’s sleep cycle is severely affected

Operational and Environmental: The operational requirements outline the environment in which the

system will be used (Robertson and Robertson 2006).

- The product should be used in classroom settings, at home, and at times of potential stress

- The product should be available to use, regardless of an active internet connection

Russell Waterson 1330057

15 | P a g e

Maintainability and Support: How or what type of maintenance is not always known, but these

requirements aim to try and foresee any suspected future patches potentially required (Robertson

and Robertson 2006).

- The product should allow for compatibility with future versions of Android

- The product should allow for easy translation into various foreign languages

6.5 Risk Review
“I am used to thinking three or four months in advance about what I must do, and I calculate on the

worst. If I take so many precautions it is because it is my custom to leave nothing to chance.” –

Napoleon I, March 14, 1808

A risk is when a potentially unwanted event has a possibility of occurring, carrying with it some form

of negative consequences (Software Testing: An ISEB Intermediate Certificate. 2009). Risk

Management is a process undertaken to help identify and mitigate these potential risks. It consists of

four stages; these are risk identification, risk analysis, risk mitigation, and risk monitoring (Software

Testing: An ISEB Intermediate Certificate. 2009).

Using the steps involved in risk management, as well as calculations for risk exposure, the following

table has been devised, where Risk is determined using risk identification, the Strategy to Avoid is

determined with risk mitigation, and the Probability and Consequence is determined through risk

analysis. The Risk Exposure however, is calculated by multiplying the probability of the risk occurring,

with the consequences if it were to occur. Quantifying risks with risk exposure allows for the

identification of a priority order with the risks concerned (Hall, 1998).

Risk Strategy to Avoid Probability
(out of 5)

Consequence
(out of 5)

Risk
Exposure

System Failure Create regular backups and have an
alternative system that can be used
to resume work on

2 5 10

Natural Disaster Create regular offsite backups
including use of version control
repositories

1 5 5

Git repository
compromised

Have multiple instances of local pulls
1 2 2

Malware or
ransomware

Use an up-to-date antivirus
software, and avoid downloading
suspicious software

1 3 3

Underestimated
development
time

Create a realistic development
schedule, ensuring for contingency 3 2 6

Poorly defined
requirements

Develop clear and detailed
requirements prior to initiating
design or development

2 2 4

Poor software
quality

Ensure significant testing during
development enabling sufficient
time to fix bugs

2 2 4

Illness Maintain a healthy lifestyle and
ensure contingency has been
factored into scheduling

3 2 6

Unforeseen
circumstances

Factor in contingency within the
project’s development schedule

4 2 8

Russell Waterson 1330057

16 | P a g e

7 TECHNOLOGICAL REQUIREMENTS

7.1 Proposed solution

7.1.1 Android Mobile Application
A mobile application is chosen as the proposed solution because the product is targeted towards

students, and the majority of student’s lives revolve predominantly around their smart phone. This

ranges from socialising, to media consumption, to navigation, so it is evident that the next

evolutionary step is revision guides to go along with the already existing organisational and working

tools.

The mobile application is to be programmed to operate on the Google Android operating system.

Firstly, this is because the worldwide market share of Android devices far exceeds its closest

opposition, with 87.5% in the third quarter of 2016, compared to Apple iOS at 12.1% (Sui, 2016).

Secondly, the Android operating system is far more developer friendly than its iOS counterpart, using

a ubiquitous programming language, Java, rather than the Apple’s own Swift programming language.

7.1.2 Alternative Options
When deciding upon the platform in which the software was to be developed, there were numerous

viable options. Firstly, a java based computer program was considered. This method not only reached

a large audience, but also allowed for the easiest and most natural I/O when entering and

manipulating data in the system. This however, failed to alleviate one of the drawbacks of existing

systems, the need for ubiquitous availability. If it were to be a computer software, it would stay on

the computer, where if the user did not have their computer with them, they also would not have

their timetable with them.

To maintain the advantages of the computer software and to remedy the disadvantages, a web

based solution was considered. This would mean that, whenever the user had an active internet

connection on any device, they would be able to access their timetable. However, this violates one of

the proposed non-functional requirements, “the product should be available to use, regardless of an

active internet connection”.

Once a mobile application approach was decided upon, the obvious Android verses iOS deliberation

took place. As explained previously in section 7.1.1, iOS uses their own proprietary programming

language called Swift written using Apple’s IDE, Xcode, of which the required hardware to run was

not available – a Mac running macOS ("Apple Developer Program", 2017). In addition, to develop and

publish applications for iOS, a $99 a year fee is required, whereas a one-off payment of $25 is

required for Android development and publication ("Google Play Developer Console", 2017).

7.1.3 Overview of Android Programming
The Android developer API guide states, “Android is an open source, Linux-based software stack

created for a wide array of devices and form factors” ("Platform Architecture", 2017). Of the major

components of the Android Platform, the Java API framework is the entire feature set of Android in

APIs written in the Java language, which aim to simplify the reuse of core, module system

components and services ("Application Fundamentals", 2017). Android applications are therefore

written using the Java programming language utilising these APIs. The created Java code, along with

the resource files, are compiled into an Android Package called an APK, which is then installable on

an Android device.

Russell Waterson 1330057

17 | P a g e

There are four main app components of an Android app, each with their individual purpose. These

are Activities, Services, Content Providers, and Broadcast Receivers ("Application Fundamentals",

2017).

An activity is represented by a single screen with a user interface. Each activity is independent of

each other; however, they can work together and be accessed from one another to form a unified

experience ("Application Fundamentals", 2017).

A service has no user interface, instead it is a process that runs in the background to carry out some

sort of operation ("Application Fundamentals", 2017).

A broadcast receiver also has no user interface, instead it is a component that allows the system to

deliver events to the app away from the usual operations, including when the app is not running. This

means the app does not need to be constantly running if a notification is scheduled to be pushed at a

certain time ("Application Fundamentals", 2017).

A content provider manages persistent and shared storage locations, such as an SQLite Database.

This data can be queried and modified providing the content provider grants the necessary

permissions ("Application Fundamentals", 2017).

The manifest file is a compulsory file, stored at the root of the project directory, that carries out

several roles. Most importantly, it is used to declare all the components in the file; the system reads

the manifest to find their existence. Other features include declaring user permissions, minimum API

levels required, and additional API libraries that the app needs ("Application Fundamentals", 2017).

7.2 Integrated Development Environment (IDE)
An IDE, or integrated development environment, is a software package that amalgamates all the

tools often required when writing and testing software. They utilise a graphical user interface to

incorporate their core features, often including a code editor, a compiler, a debugger, and a virtual

machine (VM) platform or emulation suite. They regularly have some form of integration with

version control libraries, such as Git and SVN (Rouse, 2016).

7.2.1 Android Studio IDE
Android Studio is the official IDE for Android app development. It is based on the IntelliJ IDEA IDE,

with added tools specific for Android development, including a Gradle-based build system, an

Android emulator, and extensive testing tools and frameworks ("Meet Android Studio", 2017). Being

the official IDE for Android comes with many benefits and so resulted in Android Studio being the IDE

of choice. These benefits range from always being up-to-date with the latest features and firmware,

the most recent update being from March 2017, to having an extensive range of guides and tutorials

readily available online.

7.2.2 Alternative Options
When it came to Android development, there are only a small number of viable alternatives in

regards to the IDE. One such substitute is the Eclipse IDE with the Android Developer Tools (ADT)

plugin. The ADT plugin offers GUI-based access to a large proportion of the command-line Android

SDK tools ("ADT Plugin", 2015). However, at the end of 2015, development and official support for

ADT terminated (Eason, 2015). Therefore, for obvious reasons, Eclipse with ADT was not selected as

the IDE of choice.

Russell Waterson 1330057

18 | P a g e

A second option is Visual Studio. Visual Studio takes a different approach, whereby it aims to target

multiple platforms in the same solution, sharing the code from UI elements. This is done through C#

and the .NET Framework, amongst other languages such as HTML and JavaScript, and C++ ("Cross-

Platform Mobile", 2017). As this project aims to target solely the Android platform, this approach is

not necessary as it undertakes goals outside the scope of the objectives.

7.3 Programming Language

7.3.1 Java
As explained in section 7.1.3, Android apps are predominately written in Java, enabling interaction

with the Java API framework. Therefore, it is the obvious decision to use Java as the programming

language of choice for this project.

Java is a high-level computer programming language that is concurrent, class based, and object-

oriented (Gosling et al., 2015). It is designed so that once the Java code is compiled; it can be run on

any platform that supports Java without the need for recompilation ("Java Language Environment",

2017).

7.3.2 Alternative Options
As of the release of Android Studio 2.2, released in September 2016, the Native Development Kit

(NDK) could be used to compile C and C++ code into a native library and packages it into the APK

("Getting Started with", 2017).

While Java can generate code quickly using the JVM-optimised byte-code, native machine code is

faster, especially with intensive operations such as gaming, and physics simulations. In addition, the

lack of garbage collection means that the memory footprint is far smaller than Java’s (Bolton, 2016).

While all of this makes C and C++ an attractive and viable option, these advantages are not necessary

for the proposed solution due to the lack of any demanding processes taking place.

7.3.3 XML
A layout in Android, is a definition of the visual structure for the user interface within an application.

These UI elements are declared using an XML vocabulary provided by Android which corresponds to

the View classes ("Layouts", 2017).

Extensible Markup Language (XML) is a human and machine readable language designed to store and

transport data ("XML Tutorial", 2017).

Whilst there is an alternative for declaring layouts, being programmatically instantiated at runtime, it

is recommended that they are declared using XML to better separate the presentation of code

("Layouts", 2017).

7.4 Hardware

7.4.1 Development Device
As discussed in section 7.2, Android Studio is the chosen IDE for development. A machine meeting

the minimum specification is therefore required to run the program in one of the supported

operated systems; Windows, Mac, and Linux. The machine to be used for development will be a

Windows computer, with specs against the minimum requirements below.

Russell Waterson 1330057

19 | P a g e

Android studio requirements ("Android Studio System", 2017):

- Microsoft® Windows® 7/8/10 (32- or 64-bit)

- 3 GB RAM minimum, 8 GB RAM recommended; plus 1 GB for the Android Emulator

- 2 GB of available disk space minimum,

- 4 GB Recommended (500 MB for IDE + 1.5 GB for Android SDK and emulator system image)

- 1280 x 800 minimum screen resolution

- For accelerated emulator: Intel® processor with support for Intel® VT-x, Intel® EM64T (Intel®

64), and Execute Disable (XD) Bit functionality

PC specification:

- Microsoft® Windows® 10 64-bit

- 16 GB RAM

- 128 GB SSD with 1TB SSHD Hybrid Drive

- 2560 x 1440 monitor

- Intel® Core i5 4690K CPU – supports VT-x, Intel® 64, and Execute Disable Bit ("Intel® Core™

i5-4690K", 2017)

7.4.2 Testing Device
As development progresses, a testing device will be required to run the application to test for

expected behaviour. In Android Studio, this can be done in two ways. First is to use real hardware in

the form of an Android device, and second is to use the Android Emulator built into Android Studio.

The Android Emulator simulates any device, and then displays it straight from the development

computer. It supports Android phones and tablets, as well as Android Wear and TV devices, ideal as

additional or specific hardware devices are not required ("Run Apps on the", 2017).

Both the emulator and a hardware device will be used for testing and development. The hardware

device to be used is a Huawei Nexus 6P running unrooted stock Android, version 7.1.2 Nougat. It has

a screen with a resolution of 1440 x 2560 with a xxhdpi (extra-extra-high dots-per-inch) pixel density

at ~518ppi ("Nexus 6P Specifications", 2017).

7.5 Version Control
Version control is a system which records and stores changes made to files over time so that specific

versions can easily be recalled at some point in the future (Chacon and Straub 2014). This is

especially important in software development, as it allows for code to be reverted to an earlier

revision if a bug is discovered in a new code commit.

7.5.1 Git
The version control software (VCS) to be used for this project is called Git. Git differs from other

version control software as, instead of storing a set of file based changes, it takes a snapshot of the

current state of the files for each commit. And where a file has not changed, a link to the previously

identical file is made, making for greater efficiency. In addition, the majority of Git’s operation is

local, meaning speeds are greatly increased due to the omission of network latency overheads

(Chacon and Straub 2014).

Git was the chosen VCS for a variety of reasons. Firstly, was the previous experience held with

handling Git, most notably in a professional industry setting within a fast-moving agile team of

multiple programmers. Secondly, Git has seamless integration within Android Studio, so not only

mitigating the likelihood of mistakes occurring through improper use of a command line, but also

Russell Waterson 1330057

20 | P a g e

improving efficiency by being able to review the differences in all the files being committed in a

clearly laid out GUI before any push is made.

7.5.2 Alternative Options
Whilst there are a large number of alternative VCS, the principal alternative considered was Apache

Subversion, or SVN for short. Primarily as there was a remote SVN repository available to use, but

additionally because of SVN’s ability to check out a single subdirectory of a repository; Git is unable

to carry out this action (Pearce, 2013). Whilst a significant advantage, it applies less with this project

as it will not be an industry scale endeavour, meaning the time costs of a whole repository download

is not as impactful.

7.6 Target Platform
Roughly every year, the Android operating system receives a software version update. This update

usually brings with it a host of new features for both the end user and the developers, the latter of

which is through a new API level. Therefore, new features developed for a new API will not be

available in previous Android versions where this API was yet to exist. When developing an Android

application, a minimum and target API level must be stated, known as minSdkVersion and

targetSdkVersion. The aim is to target the latest version of Android, while maintaining backwards

compatibility with older versions.

When deciding the min and target SDK version for this application, the Android Developer Platform

Version Dashboard was consulted. This dashboard provides data about the relative number of

devices running a given version of Android ("Android Dashboards", 2017). The targetSdkVersion will

be 25 (7.1 Nougat), as it is currently the latest version available, and the minSdkVersion will be 14

(4.0 Ice Cream Sandwich), as it covers 99.1% of active devices (as of 3rd April 2017).

Figure 7-1 Android Platform Distribution

Russell Waterson 1330057

21 | P a g e

8 DESIGN AND IMPLEMENTATION

8.1 Database Management System
Data storage is a key component of any system and so careful consideration is required when

determining which method of storage is to be implemented. Given that the proposed solution is an

Android application, this limits the number of storage options available. These options include

Shared Preferences, Internal Storage, External Storage, SQLite Database, and via a Network

Connection ("Data Storage Options", 2017). As Shared Preferences is used for primitive data types in

key-value pairs, and the internal and external storage are for saving files, none of these

implementations were suitable for the given use case.

A database was required to store the expected data which would be saved onto the system. This

meant the choice of a local database, through SQLite, or a remote database, through a network

connection, had to be decided upon. Whilst a remote database meant that the user’s data would be

readily available across multiple devices, it also meant that the user needed an internet connection

to use and update data in the system. Given that a non-functional operational requirement states

that the product should always be available to use, regardless of an active internet connection, it

meant that the local SQLite Database would have to be used. SQLite is the most used and most

widely deployed database engine available, claiming to be self-contained, server-less, and of the

most reliable ("About SQLite", 2017).

An entity-relationship diagram (ERD) is a data modelling technique in which the relationships

between objects in a system, is represented in a graphical layout (Rouse, 2014). Figure 8-1 shows the

ERD for this system.

Figure 8-1 Entity Relationship Diagram for Smart Revision Calendar Application

The following tables show the individual tables within the database, delineating the attribute name,

its data type, whether it is required in each record, and whether it has a special key type.

Russell Waterson 1330057

22 | P a g e

8.2 Javadoc
Javadoc is a tool used for generating documentation in a HTML format from comments made in Java

source code ("Javadoc Tool", 2004). This is done through the use of Documentation Comments, in

which they are placed before the declaration of a class, interface, method, constructor, or field

("javadoc", 2010). Writing Javadoc comments carry many benefits, however most notably being that

it massively increases the readability of code, resulting in easier testing and maintenance long after

the code’s creation.

Javadoc has been used within this project, where every class, and every method has been

commented upon. The format of these comments stay consistent throughout, where for each class

the fundamental information is incorporated, including: class name, class description, author, version

in which it was added, and creation date.

Attributes Data Type Key Type Required

Class Table

Class ID Integer Primary
Key

Yes

Module Text Yes

Title Text Yes

Day Text Yes

Start Time Text Yes

End Time Text Yes

Repeat Integer Yes

Teacher Text

Room Text

Colour Text Yes

Activity Table

Activity ID Integer Primary
Key

Yes

Title Text Yes

Day Text Yes

Start Time Text Yes

End Time Text Yes

Repeat Integer Yes

Colour Text Yes

Exam Table

Exam ID Integer Primary
Key

Yes

Module Text Yes

Title Text Yes

Date Text Yes

Start Time Text Yes

Duration Integer Yes

More Info Text

Colour Text Yes

Content
Size

Integer

Priority Integer

Attributes Data
Type

Key Type Required

Revision Table

Revision ID Integer Primary
Key

Yes

Module Text Yes

Title Text Yes

Date Text Yes

Start Time Text Yes

End Time Text Yes

Notes Text

Colour Text Yes

Event Table

Event ID Integer Primary
Key

Yes

Title Text Yes

Date Text Yes

Start Time Text Yes

End Time Text Yes

Colour Text Yes

Debrief Table

Debrief ID Integer Primary
Key

Yes

Productivity Integer Yes

Revision Length Integer Yes

Revision Rating Integer Yes

Break Length Integer Yes

Break Rating Integer Yes

Start Time Text Yes

Start Rating Integer Yes

End Time Text Yes

End Rating Integer Yes

Variety Integer Yes

Variety Rating Integer Yes

Russell Waterson 1330057

23 | P a g e

/**

 * <h1>Title</h1>

 * Description

 *

 * @author Russell Waterson

 * @version 1.0, 22-03-2017

 * @since dd-mm-yyyy

 */

The fully generated Javadoc in HTML format can be found within the project zip, as described in

Appendix A.

8.3 Package Management
As explained in section 7.1.3, the Android build system compiles source code and resources into APK

files. To automate and manage the build process, whilst still allowing for flexibility within

configurations, Android studio uses Gradle ("Configure Your Build", 2017). Gradle is an open source

build tool that replaces XML based build scripts for declaring project configuration, previously used

by Apache Maven, with domain-specific language (DSL) based on the Groovy programming language

(Kainulainen, 2004). If the project were to be built outside of Android Studio using the command line,

a separate set of build tools would be required. Apache Ant is an example of such, used mainly for

building Java applications ("Ant Apache", 2017); however, such tools were not used in this project,

only Gradle.

8.4 Key Components
This sections aims to outline core components of the system, how they work, and how they are

related. The class diagram created, seen in Appendix B, demonstrates the organisation of the classes

used. A class diagram is used to document the structure of a system by showing the classes and their

relation to each other (Stevens and Pooley 2000). While the class diagram shows the classes and

their relation, the following sections outline how each class or component achieves their defined

behaviour, each of which relates to its applicable user interface component in section 9.4, where

8.4.x equates to 9.4.x.

8.4.1 Initial Start-up
Upon the very first launch of the application, the user will be presented with a series of screens,

welcoming the user, explaining elements of the system, and allowing them to enter some initial data.

This process was implemented using the Steppers component from the Material Design Guidelines,

of which is yet to be implemented into the first party libraries, and as such, a third party library,

Material Steppers by StepStone Tech, was used (StepstoneTech , 2017). In order of their appearance,

the screens consist of, Welcome, Add Class, Add Activity, Google Calendar Sync, Cloud Backup,

Explanation of Smart Calendar, Add Exams, Learning Style, and Debriefs. Each section tapping into

relevant components of the system, reusing the components of the main system as to ensure

consistency.

This start-up section relates back to the Intro Screen functional requirements, whereby the

application should inform the user about major features and how the app operates. This is an

important process to have within the application as, as well as meeting a non-functional requirement

of Usability and Humanity, it also meets one of Jakob Nielsen’s 10 Heuristics, providing “help and

Russell Waterson 1330057

24 | P a g e

documentation”. In 1994, Jakob Nielsen, derived a set of 10 heuristics, of which are a broad set of

ideologies for creating an interactive design (Nielsen, 1994).

8.4.2 Main Screens
The main screens of the application are the top layer in the navigational tree, and from here the user

can access every part of the application. Upon its first boot, the user is presented with a dialog

explaining how to navigate the app. The top-level views in the application, navigated via the Bottom

Navigation component, are Timetable, Exams, Classes, and Activities, all of which are separate

fragments. Within the exams, classes, and activities fragment, is a Floating Action Button to take the

user down a level into the system, where they can add a new instance of that respective item. A side

navigation drawer is used for selecting options taking the user down a level, for options such as

settings, smart data, and import external events, each of which using a new activity.

8.4.3 Timetable Views
The timetable views display the calendar layouts, including a day, week, and month view. The day

and week views show all the events in the system, and is where the user can see their generated

timetable. They are implemented using the Android Week View third party library (Kanak , 2016).

The month view however, simply shows a month calendar view the number of days until the next

exam. This is implemented using the built in Android component called Calendar View. The day and

week view timetables are generated using the third party library, but only after the data has been

parsed into it. This is done by querying and returning all of the records from the Class, Activity, Exam,

and Event tables in the database. All of this ensures that all the Timetable functional requirements

have been met.

Whilst using a built-in component is a favoured approach, the Calendar View class lacks in some

functionality, and so an additional third party library was considered. The One Calendar View library

(Morocho , 2017) seemed to be a promising addition, however, this implementation was low in

priority as a month view was already in place, and in the interest of time, was not incorporated into

the application.

8.4.4 Database Queries
As explained in section 8.1, the application uses SQLite to manage its local database; this is done

through the created DatabaseHelper class which extends SQLite Open Helper. All database queries

are made through this class via public methods; this includes the initial creation of the 6 tables, and

adding, deleting, editing, and viewing records from each table. These public methods are accessed

throughout the application.

The insertClassData, insertActivityData, and insertExamData methods are called when adding a new

item to the database, where all the user inputs have been pre-validated, providing “error

prevention”, one of Nielsen’s Heuristics. When adding a class or exam, the Module field is an entity

which can be accessed across different components in the system. Each table is selected and each

unique module is fed back to the user to choose from an existing one, or to add a new one. The

insertRevisionData method is called when the smart revision has been generated and all fields are

entered by the system. The insertEventData method is called when adding an event imported from

Google Calendar and therefore the fields are generated. The insertDebriefData method is called upon

after completion of daily debrief where the fields are also generated based on a limited set of user

interactions.

Russell Waterson 1330057

25 | P a g e

The updateClassData, updateActivityData, updateExamData, and updateRevisionData methods are

called when the user opts to edit an individual item. The user’s inputs are also pre-validated before

the record update takes place.

The deleteClassData, deleteActivityData, deleteExamData, deleteRevisionData, and deleteEventData

methods are all called from when the user selects to delete that item from its respective individual

screen.

The getAllClassData, getAllActivityData, and getAllExamData methods are called when the data in

each table is to be viewed. These methods are called predominately in their respective fragments,

displayed each record in a custom-built component, as well as in the timetable view. The

getAllEventData is also called mainly from the timetable view. In addition to the timetable view, the

getAllRevisionData is also called when generating new smart revision so that it can be compared with

the newly generated data. The getAllDebriefData method is called when the user wants to update

their learning style with the user predicted values.

All these methods aim to satisfy a large number of functional requirements, including ones from

class, activity, exams, revision, and import events sub-headers.

8.4.5 The Smart System
The smart system is what allows the application to generate revision slots for the user. It is

compromised of the smart algorithm, containing over 620 lines of code, and the smart data, of which

is fed into the algorithm. This algorithm can be found from within the

com.russell.smartrevisioncalendar.smartdata.CreateRevisionBlocks class. The system is built so that

every user will get a difference experience, tailored to their exact specification, and exact

individuality and habitual nature.

The smart data is initially input into the system by the user, either during the initial start-up, or if

subsequently through the settings. It consists of the user’s preferred start and end time for revision,

their preferred revision length and break length, and the amount of variety between tasks when

revising.

The smart algorithm consists of two core steps; the creation of the revision blocks, and the allocation

of revision to the created blocks; both of which are run as an intent service and therefore in the

background on a different thread.

To complete the first step, the system takes a wide range of data from throughout the system, this

includes, preferred start and end time, revision and break length, last exam in the database, and

other items in the database in order to avoid clashes. With this data, the system populates the

revision database with revision slots, with length of the revision plus breaks in-between, up to the

date of the final exam in the system. These blocks are generated within the start and end times, and

make sure that they avoid all other events in all other databases (classes, activities, exams, and

Google Calendar Events). The following flowchart in Figure 8-2, explains how this works in a relatively

straightforward depiction.

Figure 8-2 Flowchart for the creation of revision blocks

Russell Waterson 1330057

26 | P a g e

To complete the second step, a custom-built probabilistic algorithm was created. This works out

which revision should be done when using the following inputs: variety, exam content size and

priority, and the days until that exam. The larger the content size and larger the priority relative to

other exams in the system, the higher probability it has of being selected. Likewise, the lower the

number of days till that exam relative to others, the higher the probability. The variety comes in

when a subsequent revision slots are to be generated. The higher the variety, the higher the

likelihood of it being a different exam to revise for. The following flowchart in Figure 8-3, explains the

steps taken in this probabilistic algorithm to achieve allocation of revision.

Figure 8-3 Flowchart for the allocation of revision using the probabilistic algorithm

After the revision has been generated, the user is given the opportunity to make a comparison

between the old revision and the new revision. This is in the form of a side by side exposition of the

revision generated by day, as well as a module count for how many revision slots have been created

for that module. This is done by doing a series of database queries to the revision database and

working out which records have newly been generated and which were old. Then making the

necessary calculations for the revision count, and then adding each record to a custom-built UI

component on a per day basis. However, if it is the first time revision has been generated, the user

will not get this option, and instead will be informed that it will be available on subsequent

generations.

As the smart algorithm is the heart of the system, many alternative approaches were considered

when tackling this problem. The main alternate method considered, was the use of machine learning.

Machine learning was defined by Arthur Samuel in 1959 as giving “computers the ability to learn

without being explicitly programmed” (Munoz, 2014). In machine learning, there are many

approaches and algorithms suited for a wide array of applications, ranging from Artificial Neural

Networks and Deep Learning, to Clustering and Bayesian Networks. Originally the use of Google’s

TensorFlow library was evaluated, but upon deeper research, it and machine learning as a whole was

rejected. TensorFlow is an open source library using data flow graphs for numerical computations,

where a node is a mathematical operation and an edge is a multidimensional data array ("About

TensorFlow", 2017). The reason for machine learning being rejected as an approach for the smart

learning system within the application, was because machine learning requires significant amounts of

data, and imposed additional computational stress. As the application relies on offline computations

only, to meet the operational non-functional requirement, the scalability that comes with machine

learning allows for a distributed training infrastructure, of which will require access to a remote

learning engine. Following on from this, machine learning processes usually involve intensive

computations, inflicting heavy stress on CPUs and GPUs. The proposed system aims to be available

on a wide range of devices, including those of older hardware. Incorporating machine learning may

inhibit this, as well as restrict offline only computations, therefore its use has been dismissed.

8.4.6 Debriefs
The debriefs allow the application to fine tune the learning style of the user based on their continued

feedback, aiming to meet a number of the Smart Revision and Data functional requirements

previously summarised. At the end of each day containing revision, an internal alarm is triggered so

that a notification on the mobile is displayed informing the user to complete the debrief, regardless

Russell Waterson 1330057

27 | P a g e

of whether they are currently using the app or not. The alarm is also updated when the phone is

rebooted, there is change in time zone, or the internal clock has been changed.

Once each debrief is completed the input data is stored as a record in the Debrief Table in the

database, with fields of the record as described in section 8.1. All of this data will eventually be used

to calculate and recommend to the user how they should update their learning style data to help

maximise their learning output. This can be done via the Smart Calendar Data settings screen and

choosing the “Recommend Smart Data Updates”. A complex, custom-made formula is used to

calculate the updated values, which works roughly as follows:

First, the productivity of the day is taken from the number of stars selected by the user, it is then

used to calculate the severity of change for each of the components, where the more productive the

day, the less each value will change. The discrete slider position for each of the respective values

represents how the value will change, where in the centre represents no change, and the further left

and further right it goes represents a more significant change. This is done for every single debrief

record in the database, and the average of all the values for each field is taken, resulting in the new

recommended smart data. Therefore, the more the user feeds back data to the system, the more

accurate the predictions will become. The user is then told the recommended values, and has a

choice of whether they would like to accept them or not.

8.4.7 Cloud Backups
The cloud backups allow the user to not only backup all their records into the cloud, but to also be

able to view these records from another device, thus meeting the Backups functional requirements.

Upon surveying a number of potential users, there was 90.48% interest, being very or mildly

important, in having their calendar viewable on another device, and so, this feature was included in

the functional requirements.

For this feature, Google Drive was the cloud storage option to be implemented. The reason Google

Drive was implemented as opposed to alternatives such as Dropbox or OneDrive, was because

Google Drive’s readily available use, as well as online support, for their APIs is inimitable. In addition,

it has over 240 million active users as of October 2014, and over one million paying users as of

September 2015 (Darrow, 2015), and has been consistently on the rise.

To use a Google API, a number of steps are required before they able to operate within the

application. First a Google API Manger account had to be setup where access to Google’s APIs were

requested. Then the application must be authorised against OAuth 2.0. OAuth 2.0 is the industry-

standard protocol for authorisation, which focuses on client developer simplicity ("OAuth 2.0", 2017).

This was achieved by registering the application with its certificate, obtained by running a Keytool

utility to get the SHA1 fingerprint of the digitally signed apk file ("Getting Started", 2017). Once

complete, the code could then be written to access Google Drive.

Once the connection to the user’s Google Drive is established, two files will be offered to be backed-

up, these are a text file, and the raw database file. As the name suggests, the raw database file is

taken straight from the phone’s storage without any alterations. The text file however, is generated

by the system; it parses all the tables in the database, and writes out each record to a text file, under

the heading represented by each table name.

8.4.8 Import Google Calendar
The user has the option to connect their Google Calendar to the application so that they are able to

import chosen events, which can then be considered during the timetable generation. For this

feature, the Google Calendar API was to be utilised. The reason for Google Calendar’s use, as

Russell Waterson 1330057

28 | P a g e

opposed to alternatives such as iCal or Outlook Calendar, was main due to the fact that Google

Calendar is the default calendar application and provider built into all Android phones. Google

Calendar API also requires the use of OAuth 2.0, which required the following of the same steps

outlined in section 8.4.7.

After the user has chosen the number of records to search for, and the connection to their Google

Calendar has been established, a list of these events will be displayed within custom-built UI

components per event. The API however, returned a long and convoluted string containing the

event’s time and date details. To convert this to a user readable format, regular expressions had to

be utilised. A regular expression is a special text string for depicting a pattern to be used in a search

query (Goyvaerts, 2016). After selecting the events to add, scrolling to the bottom of the page and

clicking the “Save” button will add the selected items to the events database, thus meeting the

Import Events functional requirements.

8.4.9 Mute Phone
The mute phone functionality is a user activated setting whereby the user can choose to have the

application automatically set the phone to silent during the hours of revision. This was an additional

feature outside of the main aims of which had 80.95% interest, being high or slight increase in

productivity, where surveyed potential users felt it would be a beneficial addition, potentially

minimising distractions. And so, it was introduced into the functional requirements as Phone Muting.

In a similar way as the debriefs, an internal alarm is set at the preferred start time and preferred end

time, however to mute and unmute the phone respectively, instead of showing a notification.

8.4.10 Settings
The settings screen and the smart calendar data screen are both settings activities where the user is

able to edit data and preferences that are persistent throughout the application. These activities use

the PreferenceFragment which provides a platform in which to access the shared preferences, the

persisting data within a system ("PreferenceFragment", 2017).

From the settings screen, the user can:

- Activate and deactivate phone muting, as described in 8.4.9

- Rerun the initial setup walkthrough, as described in 8.4.1

- Write an email to the developer, whereby the user’s email client is opened with a draft email

containing the dev’s email address, and the subject “Smart Revision Calendar”.

- View changelog

- View a dialog explaining more about the application and its inception

8.4.11 String Resource File
As defined in the non-functional requirements in section 6.4, the ability to allow for easy translation

into various foreign languages in future maintenance and support is a desired requisite. The

implemented string resource file aims to satisfy this requirement. The string resource file contains all

the text strings within the application, so that the translation of the written text can be done using

just the single file without the need for going through the application’s code.

Russell Waterson 1330057

29 | P a g e

9 USER INTERFACE

The user interface (UI) and user experience (UX) of a piece of software are paramount for its success;

if a user does not like the way an application looks or operates, they will be less inclined to continue

using it. To ensure the UX of this project was of the highest quality, a lengthy multi-stage process was

undertaken, using both low fidelity and high fidelity techniques.

To aid with this, a set of commonly used principles and rules were considered and intertwined within

each design decision. The most prominent being Shneiderman’s 8 Golden Rules. These rules consist

of: 1) Strive for consistency, 2) Seek universal usability, 3) Offer informative feedback, 4) Design

dialogs to yield closure, 5) Offer error prevention and simple error handling, 6) Permit easy reversal

of actions, 7) Keep users in control, 8) Reduce short-term memory load (Shneiderman et al., 2016).

9.1 Material Design
A common approach when designing a user interface, is to create an evolution of an existing product.

For this application, the Material Design guidelines were utilised as the core of the interface design.

Material design is a visual design language created by Google which aims to deliver a “single

underlying system that allows for a unified experience across platforms and device sizes”

("Introduction", 2017). By using a print-based design – typography, grids, space, scale, colour, and

use of imagery – Material Design’s aim is to put an emphasis on the user’s actions thus making the

core functionality of a system immediately apparent.

The utilisation of Material Design was decided upon partly due to its massive span of current

implementation. In Google made apps alone, there are 16 Android applications that implement

Material Design with over one billion downloads ("Google Inc.", 2017); thus, the intention is to create

a means of uniformity and familiarity for the user. In addition, its implementation meets the looks

and feel non-functional requirement set out in section 6.4.

9.2 Sketches
“The best way to get a good idea, is to get lots of ideas” – Linus Pauling. Sketches are a low-fidelity

form of prototyping that allows for a vast range of alternatives to be explored quickly and cheaply,

where poor or inferior ideas can be thrown away with minimal cost. A wide array of sketches were

constructed in order to achieve exactly that. Figure 9-1 shows a small subset of sketches, drawn long

before a computer was even involved, demonstrating an array of different approaches for the user

interface.

Figure 9-1 Example of UI Sketches

Russell Waterson 1330057

30 | P a g e

9.3 Wireframes
Once the sketches had been evaluated, a prototype was created in the form of a wireframe,

representing how the application and its interactions will operate. A wireframe is a layout of an

application demonstrating key interface elements, providing a visual understanding, enabling

evaluation, reflection and feedback, as well as being able to test out ideas without its full

implementation ("What is Wireframing", 2017).

The software that was used in order to create the wireframes, was called JustInMind. A program

specialising in the prototyping of websites and apps for Web, iOS, and Android. An interactive demo

for this wireframe can be found in the supplied zip file, as explained in Appendix A. Figures 9-2

through to 9-9 show screenshots from this constructed wireframe.

Figure 9-2 Day Timetable View Figure 9-3 Week Timetable View Figure 9-4 Day Month View Figure 9-5 Class List View

 Figure 9-6 Activity List View Figure 9-7 Exam List View Figure 9-8 Smart Data Settings Figure 9-9 Individual Item Screen

9.4 Final GUI
Once a true to life wireframe had been created, the next step was to find the necessary layout

components in the Android library, as well as choose a colour scheme for the application. Of the list

of Material Design colours ("Color", 2017), a colour was chosen to stand out from the plethora of

Russell Waterson 1330057

31 | P a g e

existing apps. Brown #795548 is a colour that does not

appear often in other apps, and teal #009688 is a good

complimentary colour to brown. A study carried out by

Stuart Hall in 2015, plotted the top 200 apps on the Google

Play Store on a colour wheel, and concluded that majority

fall under blue, red, or green.

As discussed in section 6.3.3, the layouts for the user

interface are predominately established within XML files in

the resource directory. The following sections go into

future detail about how the significant UI elements of each

section are achieved, each of which relate back to its key

component in section 8.4, where 9.4.x equates to 8.4.x. All

screenshots are taken from the application running on the

Nexus 6P testing device stated in section 7.4.2, however,

the UI has been designed so that it can scale to any screen size and resolution, as seen in figures 9-11

through 9-13, and therefore meeting the “looks and feel” non-functional requirement for consistency

set out in section 6.4.

 Figure 9-11 Neuxs 5 1080x1920: 445ppi Figure 9-12 Neuxs 4 768x1280: 318ppi Figure 9-13 Neuxs S 480x800: 233ppi

9.4.1 Initial Start-up
To implement this section of the application, the Steppers component from the Material Design

Guidelines was utilised ("Steppers", 2017). As this design component was not implemented into first

party libraries, a third party library had to be used. The chosen library, Material Stepper by StepStone

Tech, was the closest in likeness to the design spec, so made a suitable fit.

Of the large number of stepper types included within the design spec, and subsequently in the

library, the chosen implementation was the “Dots” stepper type. This was because it clearly shows

Figure 9-10 Colour wheel plotting app icon
colours (Hall, 2015), arrow indicating brown

Russell Waterson 1330057

32 | P a g e

the user’s current step as well as the total number of steps in the process, thus conforming to one of

Nielsen’s Heuristics, offering “visibility of system status” (Nielsen, 1994).

When researching for third party libraries to implement the steppers component, there were a

number of others, including Material Stepper by Francesco Cannizzaro (Cannizzaro , 2016), which

were to be considered. Whilst this implementation was arguably simpler, it did not have the full

feature-set that the chosen library had.

An alternative material component that was considered when implementing the initial start-up, was

expansion panels ("Expansion panels", 2017). Expansion panels are often used in the lightweight

editing of elements. Whilst this component can be connected to larger surfaces, including cards, it

did not have the flexibility that comes with steppers and having separate fragments per step.

Step 1 (Figure 9-14): shows a welcome screen giving the user a chance to enter their name, easing

them into the system with a personal touch. Clicking Next here, or on any of the following screens,

will take the user to the next step, ensuring a consistent experience; meeting Shneiderman’s first

rule, “strive for consistency” (Shneiderman et al., 2016).

Step 2 (Figure 9-15): shows classes in the system, clicking “Add Class” button takes the user to the

same screen used for adding a class during the app’s normal operation, i.e. post start-up, see section

9.4.4. Clicking back here, or on any of the following screens, will take the user to the previous step.

Step 3 (Figure 9-16): shows activities in the system, clicking “Add Activity” button takes the user to

the same screen used for adding an activity during the app’s normal operation, i.e. post start-up, see

section 9.4.4.

 Figure 9-14 Welcome Figure 9-15 Add Class Figure 9-16 Add Activity

Step 4 (Figure 9-17): clicking “Setup” button takes the user to the same screen used for syncing

Google calendar during the app’s normal operation, i.e. post start-up, see section 9.4.8.

Step 5 (Figure 9-18): explaining the cloud backup process.

Step 6 (Figure 9-19): explaining features of the smart calendar and revision generation.

Russell Waterson 1330057

33 | P a g e

 Figure 9-17 Google Calendar Sync Figure 9-18 Cloud Backup Figure 9-19 Smart Calendar Features

Step 7 (Figure 9-20): shows exams in the system, clicking “Add Exam” button takes the user to the

same screen used for adding an exam during the app’s normal operation, i.e. post start-up, see

section 9.4.4.

Step 8 (Figure 9-21): all steps are scrolling layouts for when there is more content than the devices

screen can fit, this learning style screen being an example of that. Clicking either times, brings up a

TimePicker Dialog, of which is a built-in Android component, so should be familiar to the user.

Clicking on either block length number, brings up a dialog with an EditText field and the numerical

only keyboard. This numerical only keyboard only permits the user to enter numbers, thus satisfying

one of Shneiderman’s rules, “Offer error prevention and simple error handling” (Shneiderman et al.,

2016). The variety is a slider where the value beneath is updated as the slider changes.

Step 9 (Figure 9-22): tick boxes to activate or deactivate debriefs. Pressing complete will finish this

activity and return to the previous one, or start the main activity if on first boot. A toast message will

be displayed congratulating the user that they have completed the start-up, once again fulfiling

another golden rule by Shneiderman, “design dialogs to yield closure” (Shneiderman et al., 2016). A

toast message is a small popup intended to provide feedback, which disappears after a timeout

("Toasts", 2017).

 Figure 9-20 Add Exam Figure 9-21 Learning Style Figure 9-22 Debriefs

Russell Waterson 1330057

34 | P a g e

9.4.2 Main Screens
The navigation is split into two core components, Bottom Navigation ("Bottom navigation", 2017)

and Drawer Layout ("DrawerLayout", 2017). The bottom navigation bar allows the user to switch

between top-level views in a single tap. Selecting a bottom navigation icon will take the user directly

to the associated view or refreshes the currently active view. The side drawer layout is also a top-

level navigation tool, however an interactive "drawer" is pulled out from the left side of the screen.

In addition to these two navigational techniques, a Floating Action Button (FAB) is used. This is a

special button that represents a primary or promoted action within an application ("Floating Action

Button", 2017). Within this application, it is used to add a new class, activity, or exam, depending on

which screen is currently being viewed. The icons for the timetable, exams, classes, activities, and

add new, are a calendar, book, graduation hat, cyclists, and a plus respectively. These icons are

similar to their operation, and hence provide a “match between the system and real world”, of which

satisfies one of Nielsen’s Heuristics.

 Figure 9-23 Main Screen Figure 9-24 Side Navigation Drawer

9.4.3 Timetable Views
When adding a new class, activity, exam, or event, the user has the choice to select a colour for this

item. This is so each item can better be distinguished from one another within the timetable views,

as seen clearly Figures 9-25 to 9-27. Individual research conducted both by Pearson, and Halverson,

conclude that colour can greatly increase effectiveness of visual search, especially in content rich

pages (Halverson and Hornof, 2004; Pearson and van Schaik, 2003). In addition to using user defined

colours, the familiar day, week, month view has been adopted, of which is used in the Google

Calendar application. With between 100 and 500 million users on Android alone ("Google Inc.",

2017), the aim with implementation within this application, was to not only “seek universal

usability”, one of Shneiderman’s rules (Shneiderman et al., 2016), by introducing transferable skills,

but to also introduce “recognition rather than recall”, one of Nielsen’s heuristics (Nielsen, 1994), by

minimising the user’s memory load.

FAB
Bottom
Navigation

Side
Navigation
Drawer

Russell Waterson 1330057

35 | P a g e

 Figure 9-25 Day Timetable View Figure 9-26 Week Timetable View Figure 9-27 Month Timetable View

9.4.4 Database Queries
Adding class, activity, and exam data is done through their respective add screens, accessed through

the floating action button from each fragment. Each field to be entered uses an appropriate Android

component for inputting this data. For example, text fields will use a TextInputEditText component

with appropriate capitalisation, numbers will also use a TextInputEditText component however with

a numerical keyboard displayed, dates will use a DatePicker Dialog, times will use a TimePicker

Dialog, days will use a Spinner dropdown list containing all the days, repeats will use a switch, and

the colour will use a custom-built colour picker. When any of these inputs are invalid, a dialog will be

displayed informing the user exactly which inputs need correcting.

 Figure 9-28 Add Class Figure 9-29 Add Activity Figure 9-30 Add Exam

The custom-built colour picker is a list of all the colours in the system by name, as seen in Figure 9-

31. Selecting one of these colours will change the colour view to the one selected showing how it will

appear throughout the system. All colours consist only of level 500 Material Colours ("Color", 2017).

Russell Waterson 1330057

36 | P a g e

Editing class, activity, exam, or revision data is done through the same add screens from before.

However, the title instead reads “Edit [item]” and all the data fields are populated with the

previously existing data, as seen in Figure 9-32.

 Figure 9-31 Custom Colour Picker Figure 9-32 Edit Item Screen

Records can be viewed in a variety of ways in each database. Outside of the timetable view, the main

two methods for viewing data, are the main fragments for class, activity, and exam, as seen in

Figures 9-33, 34, and 35 respectively, and the individual item screen, as seen in Figure 9-36.

Each of the fragments uses a custom-built UI component for displaying each individual record,

showing the majority of its data fields for each. This is done through text, a coloured line on the left

representing the record’s colour, and a repeat icon if applicable. The exam component has a priority

view whereby its value is represented as filled in counters in the same colour of that exam. This is as

the priority of each exam, is a key component of the system, so this view stands out significantly

more than a simple number as part of a text view. As the number of components for each screen is

determined by the number of items in that particular table in the database, the UI is rendered

programmatically rather than through XML.

 Figure 9-33 Exams Screen Figure 9-34 Classes Screen Figure 9-35 Activities Screen

Russell Waterson 1330057

37 | P a g e

The individual item screen uses the same template through displayed

classes, activities, exams, revision, and events, however the data and

icons displayed is different for each. It uses an expanding and

collapsing toolbar, through the CoordinatorLayout which reacts to

scrolling, of which is in the colour of that item. There is a floating

action button for editing the item, which also reacts to scrolling, as

well as the delete icon in the toolbar. This delete icon uses a tooltip, a

text label containing brief helper text about its function, which in this

case is activated by long pressing the icon ("Tooltips", 2017). This

provides “help and documentation”, one of Nielsen’s Heuristics

(Nielsen, 1994). The icons for the delete and edit options, are a bin

and a pencil respectively, providing a “match between the system

and real world”, satisfying another one of Nielsen’s Heuristics

(Nielsen, 1994). The navigation bar is changed to black on this screen

as to not overload the user with colour.

When deleting classes, activities, exams, revision, or events, the

system first asks the user whether they are sure they wish to

complete this action, followed by a toast message explaining which

course of action has taken place and its effect on the system. This

implementation satisfies three of Shneiderman’s rules, being “offer

informative feedback,” “design dialogs to yield closure,” and “offer

error prevention and simple error handling” (Shneiderman et al.,

2016).

9.4.5 Smart Data
The smart data is editable using two separate methods, one is through

the initial start-up process as explained in section 9.4.1, and the other

is through the smart calendar data settings explained in section

9.4.10.

As the smart algorithm is an intent service and is run in the

background without a GUI, a decision was made to stop the user from

making any actions on the main thread. This is done by displaying an

uncancellable Progress Dialog informing the user of the actions taking

place. This is ensuring “visibility of the system status,” one of Nielsen’s

Heuristics (Nielsen, 1994).

The screen shown subsequent to revision being generated showing

the difference between old and new revision, is an activity containing

custom-built UI components in a scroll view. A custom component is

used for each day of revision, where the date is displayed followed old

revision on the left and new revision on the right, each containing

what it is for and its time. Outside of these components and module

counter, are static components that do not react with the scroll view.

These are the column headers, and the buttons to save the chosen

revision. Having them constantly in view keeps the user in control,

thus “supporting an internal locus of control”, one of Shneiderman’s

rules (Shneiderman et al., 2016).

Figure 9-36 Individual Item Screen

Figure 9-37 Revision Generation

Figure 9-38 Revision Difference Screen

Russell Waterson 1330057

38 | P a g e

9.4.6 Debriefs
After the debrief notification has been clicked, the user is presented

with an activity containing a RatingBar, a built-in Android component

for selecting ratings in stars, and a series of Discrete SeekBars. The

rating bar is used to rate the productivity of that day in a clear way,

through the use of 5 stars. The sliders are used to rate individual

components where the middle is perfect, the left is a less than desired

action, and the right is a more than desired action, all of which is

described at each step. Clicking the “Done” button adds the entered

data to the Debriefs table in the database.

9.4.7 Cloud Backups
Cloud backups are accessed through the side Drawer Layout from the main screens. It is a custom-

made view at the bottom of the drawer containing the time and date of the previous backup, as seen

in Figure 9-24. This “offers informative feedback” to the user, one of Shneiderman’s rules

(Shneiderman et al., 2016).

9.4.8 Import Google Calendar
The custom-built UI component for displaying each event consists of: the same colour picker found in

adding any other new item, a tick box, and text containing the event title, date, and start and end

time. The user is able to select events they wish to add via the tick box, and then change those

selected event’s colour via the colour picker. Scrolling to the bottom of the page and clicking the

“Save” button will add the selected items to the system.

 Figure 9-41 Import Calendar Search Figure 9-42 Import Calendar Results

Figure 9-40 Day Debriefs Screen

Figure 9-39 Debrief Notification

Russell Waterson 1330057

39 | P a g e

9.4.9 Mute Phone
The mute phone option is a simple toggle switch found from within the settings, as seen in section

9.4.10. The alarms previously described are set in the background, however a toast notification is

displayed informing the user that this is taking place, “offering informative feedback”.

9.4.10 Settings
The settings screen and the smart calendar data screen are both PreferenceFragments. Whilst

PreferenceFragment provides a platform in which to access the shared preferences, the persisting

data within a system, it also allows for the following of the visual style of the system preferences

("PreferenceFragment", 2017). This therefore follows the “consistency and standards” of all settings

screens throughout the majority of Android applications, satisfying a Nielsen Heuristic (Nielsen,

1994).

Prior to the discovery of PreferenceFragments, the GUI for the Smart Calendar Data screen had been

created based on the mock-ups in the sketches and the wireframes, as seen in Figure 9-45. After

PreferenceFragments had been implemented, as seen in Figure 9-44, the user is given more useful

information about what each entry is and does.

 Figure 9-43 Settings Screen Figure 9-44 Smart Calendar Data Screen Figure 9-45 Old Calendar Data Screen

Russell Waterson 1330057

40 | P a g e

9.5 App Icon
The icon for the application is a light bulb with a brain inside, as seen in Figure 9-46 and Figure 9-47.

The light bulb represents the sparking of an idea, as well as the synonym of being switched on. The

brain is representative of the smart algorithm in place to generate revision.

The focus image is adapted from “Brain Light Bulb” (GDJ, 2016), which was then further edited using

the Android Asset Studio (Nurik , 2017). The colour of the icon is the same of that used throughout

the application, Material Brown #795548, keeping the consistency, as well as having that

recognisable colour. Both a square and a circle app icon were created in order to have compatibility

with Android Nougat 7.1 round app icons ("Round Icon Resources", 2017). In addition to all this, both

the square and round icons were generated in multiple sizes to render efficiently on a wide variety of

screen densities ("Size and Format", 2017).

In addition to the app icon, the notification and status bar icon had to also be created. This

notification icon is required to only consist of white pixels on a transparent backdrop ("Status Bar

Icons", 2017). This was achieved by taking the same light bulb brain image, and editing it using

Paint.net, a free image and photo editing software. The colours were inverted to white along with

the required transparent elements.

 Figure 9-46 Round App Icon Figure 9-47 Original Square App Icon

Russell Waterson 1330057

41 | P a g e

10 TESTING

Throughout the implementation of the application, as well as upon completion, an extensive amount

of testing was carried out to ensure the highest quality code has been developed, as well as

determining whether it satisfied all of the detailed requirements.

10.1 Unit Testing
Unit testing is a white box testing technique whereby each unit, being the smallest testable part of

the application, is independently inspected for its precise and expected operation (Rouse, 2017). Unit

tests are commonly automated, however a large proportion of the unit tests carried out within this

project were completed manually. An extensive list of all the unit tests completed can be found in

Appendix D.

10.2 Instrument Espresso Testing
Instrumented tests are a type of unit test that is written with support for the Android framework

APIs, as components are required in the testing, and are therefore ran on a physical device or

emulator ("Building Instrumented", 2017). The Espresso testing framework is a tool for writing UI

tests and simulating user interactions within the application ("Testing UI", 2017). The instrumented

unit tests are written as a JUnit 4 test class using assertions and annotations.

These tests are located within the …/src/androidTest/… directory as outlined in Appendix A. The

following instrumented tests were written and carried out, including an 11th dummy test case:

1. Add Activity – checks it exists when returning to the activity fragment

2. Add Class – checks it exists when returning to the class fragment

3. Add Exam – checks it exists when returning to the exam fragment

4. Delete Activity – checks the activity does not exist when returning to its fragment

5. Delete Class – checks the class does not exist when returning to its fragment

6. Delete Exam – checks the exam does not exist when returning to its fragment

7. First start up – checks all the steppers during the initial start-up are present

8. Add Empty Activity – checks all the validation is in place when entering an empty activity

9. Add Empty Class – checks all the validation is in place when entering an empty class

10. Add Empty Exam – checks all the validation is in place when entering an empty exam

All above tests passed when ran on a Nexus 6P emulator running Android 6.0, as seen in Figure 10-1.

Figure 10-1 Espresso Instrument Test Log

10.3 Functional Testing
Functional testing is a testing technique that is used to test the functionality of the application

against the functional requirements and specifications previously documented ("Functional Testing",

2016). It is a form of black box testing whereby the internal logic of the application is not known by

Russell Waterson 1330057

42 | P a g e

the tester, thus better simulating actual real world usage. The functional testing carried out for this

application is documented below, with the intention of covering all functional requirements

previously detailed in section 6.3.

ID Name Description Initial
Syste
m
State

Input Expected Output Result

1 Run
through
Initial
Boot

Upon the first
boot of the
app, the initial
setup is ran

Phone
home
screen

Click on the
Smart Revision
Calendar app
icon, and
enter the
relevant data
for each
screen hitting
next when
done until
complete

The app will launch and as
it is the first boot it will
show the initial setup,
containing screens for
welcome, add classes, add
activities, google calendar
sync, cloud backup, smart
calendar explanation, add
exams, learning style, and
debriefs. When complete,
the system will show a
dialog explaining how to
navigate the application.

Pass
08/03/17

2 Add
Empty
Class

Attempt to
add a new
class into the
system
contain all
empty fields

App
main
screen

Click the class
tab, click to
add class, no
data is
entered, click
“add”

The system responds by
informing the user of all
the incorrectly entered
fields: module, title, start
and end time.

Pass
08/03/17

3 Add Real
Class

Add a new
class into the
system using
real data

App
main
screen

Click the class
tab, click to
add class,
enter real data
to all data
fields, click
“add”

The system accepts the
data and adds it to the
class database. It then
returns to the class tab.

Pass
08/03/17

4 View
Class

View the
previously
entered class
in the class tab
and view it as
an individual
item

App
main
screen

Click the class
tab, click the
previously
entered class

The system shows a list of
classes in the DB, one of
which being the previously
entered class, click on that
class and the system
shows all its data on an
individual screen.

Pass
08/03/17

5 Edit Class
to
Erroneou
s Data

Attempt to
edit the
previously
entered class
by entering all
empty fields

App
main
screen

Click the class
tab, click the
previously
entered class,
click the “edit”
floating action
button, delete
all data, click
“edit”

Once edit has been clicked,
the system shows the
original add class screen
but with populated fields.
Entering all empty fields
will show the same error
message as before
informing the user of all
the incorrectly entered

Pass
08/03/17

Russell Waterson 1330057

43 | P a g e

fields: module, title, start
and end time.

6 Edit Class Edit the
previously
entered class
using real data

App
main
screen

Click the class
tab, click the
previously
entered class,
click the “edit”
floating action
button, enter
real data to all
data fields,
click “edit”

Once edit has been clicked,
the system shows the
original add class screen
but with populated fields.
The system accepts the
data and adds it to the
class database. It then
returns to the class tab.

Pass
08/03/17

7 Delete
Class

Delete the
previously
entered class

App
main
screen

Click the class
tab, click the
previously
entered class,
click delete
and accept the
dialog

The system deletes the
class from the class
database.

Pass
08/03/17

8 Add
Empty
Activity

Attempt to
add a new
activity into
the system
contain all
empty fields

App
main
screen

Click the
activity tab,
click to add
activity, no
data is
entered, click
“add”

The system responds by
informing the user of all
the incorrectly entered
fields: activity name, start
and end time

Pass
08/03/17

9 Add Real
Activity

Add a new
activity into
the system
using real data

App
main
screen

Click the
activity tab,
click to add
activity, enter
real data to all
data fields,
click “add”

The system accepts the
data and adds it to the
activity database. It then
returns to the activity tab.

Pass
08/03/17

10 View
Activity

View the
previously
entered
activity in the
activities tab
and view it as
an individual
item

App
main
screen

Click the
activity tab,
click the
previously
entered
activity

The system shows a list of
activities in the DB, one of
which being the previously
entered activity, click on
that activity and the
system shows all its data
on an individual screen.

Pass
08/03/17

11 Edit
Activity
to
Erroneou
s Data

Attempt to
edit the
previously
entered
activity by
entering all
empty fields

App
main
screen

Click the
activity tab,
click the
previously
entered
activity, click
the “edit”
floating action
button, delete

Once edit has been clicked,
the system shows the
original add activity screen
but with populated fields.
Entering all empty fields
will show the same error
message as before
informing the user of all
the incorrectly entered

Pass
08/03/17

Russell Waterson 1330057

44 | P a g e

all data, click
“edit”

fields: activity name, start
and end time.

12 Edit
Activity

Edit the
previously
entered
activity using
real data

App
main
screen

Click the
activity tab,
click the
previously
entered
activity, click
the “edit”
floating action
button, enter
real data to all
data fields,
click “edit”

Once edit has been clicked,
the system shows the
original add activity screen
but with populated fields.
The system accepts the
data and adds it to the
activities database. It then
returns to the activity tab.

Pass
08/03/17

13 Delete
Activity

Delete the
previously
entered
activity

App
main
screen

Click the
activity tab,
click the
previously
entered
activity, click
delete and
accept the
dialog

The system deletes the
activity from the activity
database.

Pass
08/03/17

14 Add
Empty
Exam

Attempt to
add a new
exam into the
system
contain all
empty fields

App
main
screen

Click the exam
tab, click to
add exam, no
data is
entered, click
“add”

The system responds by
informing the user of all
the incorrectly entered
fields: module, title, date,
duration. And the content
size and priority will be set
to a default of 0.

Pass
08/03/17

15 Add Real
Exam

Add a new
exam into the
system using
real data

App
main
screen

Click the exam
tab, click to
add exam,
enter real data
to all data
fields, click
“add”

The system accepts the
data and adds it to the
exam database. It then
returns to the exam tab.

Pass
08/03/17

16 View
Exam

View the
previously
entered exam
in the exams
tab and view it
as an
individual item

App
main
screen

Click the exam
tab, click the
previously
entered exam

The system shows a list of
exams in the DB, one of
which being the previously
entered exam, click on that
exam and the system
shows all its data on an
individual screen.

Pass
08/03/17

17 Edit
Exam to
Erroneou
s Data

Attempt to
edit the
previously
entered exam
by entering all
empty fields

App
main
screen

Click the exam
tab, click the
previously
entered exam,
click the “edit”
floating action
button, delete

Once edit has been clicked,
the system shows the
original add exam screen
but with populated fields.
Entering all empty fields
will show the same error
message as before

Pass
08/03/17

Russell Waterson 1330057

45 | P a g e

all data, click
“edit”

informing the user of all
the incorrectly entered
fields: module, title, date,
duration. As well as setting
the content size and
priority to a default of 0.

18 Edit
Exam

Edit the
previously
entered exam
using real data

App
main
screen

Click the exam
tab, click the
previously
entered exam,
click the “edit”
floating action
button, enter
real data to all
data fields,
click “edit”

Once edit has been clicked,
the system shows the
original add exam screen
but with populated fields.
The system accepts the
data and adds it to the
exams database. It then
returns to the exam tab.

Pass
08/03/17

19 Delete
Exam

Delete the
previously
entered exam

App
main
screen

Click the exam
tab, click the
previously
entered exam,
click delete
and accept the
dialog

The system deletes the
exam from the exam
database.

Pass
08/03/17

20 View
Daily
Time-
table

View the daily
timetable in
the timetables
tab to see all
the entered
items in each
database for
an individual
day

App
main
screen

Ensure that
data is
entered in
each of the
databases,
Click the
timetable tab,
click on day
view from the
dropdown

The system will show the
current day along with all
the classes, activities,
exams, and revision for
that day. The user can
scroll up and down to
change time, left and right
to change day, and can
zoom in and out by using a
pinching gesture.
Individual items can also
be clicked to show all their
info in a separate screen.

Pass
08/03/17

21 View
Weekly
Time-
table

View the
weekly
timetable in
the timetables
tab to see all
the entered
items in each
database for a
particular
week

App
main
screen

Ensure that
data is
entered in
each of the
databases,
Click the
timetable tab,
click on week
view from the
dropdown

The system will show the
current week along with all
the classes, activities,
exams, and revision during
that week. The user can
scroll up and down to
change time, left and right
to change weeks, and can
zoom in and out by using a
pinching gesture.
Individual items can also
be clicked to show all their
info in a separate screen.

Pass
09/03/17

Russell Waterson 1330057

46 | P a g e

22 View
Monthly
Time-
table

View the
monthly
timetable in
the timetables
tab to see a
month by
month view

App
main
screen

Click the
timetable tab,
click on month
view from the
dropdown

The system will show the
current month. The user
can scroll left and right to
change months.

Pass
08/03/17

23 Manually
Change
Smart
Data to
Valid
Data

Change
previously
entered smart
data

App
main
screen

Click the smart
calendar data
screen from
the side
navigation bar,
change the
start and end
time, revision
and break
block size, and
variety

The values saved in the
system will change to the
entered values, which will
be taken into account
when recalculating
revision slots

Pass
08/03/17

24 End of
Block
Debrief

Fill in the end
of block
debrief form

Any
screen
on the
phone,
even
out-
side
the
app

Click the
notification
when
displayed,
complete the
data form
presented,
click done

At the end of a revision
block, a notification will be
displayed on the user’s
phone. Clicking the
notification will display the
end of block debrief form.
Entering data and pressing
done will save the data
into the debrief database

Fail – end
of block
debriefs
has not
been
impleme
nted due
to time
constrain
ts

25 Daily
Debrief

Fill in the daily
debrief form

Any
screen
on the
phone,
even
out-
side
the
app

Click the
notification
when
displayed,
complete the
data form
presented,
click done

At the end of a revision
day, a notification will be
displayed on the user’s
phone. Clicking the
notification will display the
daily debrief form.
Entering data and pressing
done will save the data
into the debrief database

Pass
08/03/17

26 Recomm
end
Smart
Data
Updates

After a
number of
daily debriefs,
select to
recommend
start data
updates, and
accept the
changes

App
main
screen

Complete a
number of
daily debriefs,
click the smart
calendar data
screen from
the side
navigation bar,
choose to
recommend
smart data
updates,
accept the

A dialog will be displayed
showing a new revision
and break length, new
start and end times, and a
new variety. Choosing yes
will change the smart data
to the displayed options,
which will then be taken
into account when
recalculating revision slots

Pass
08/03/17

Russell Waterson 1330057

47 | P a g e

proposed
changes

27 Calculate
Smart
Revision
Slots for
the first
time

The system
will calculate
revision slots
based on the
user’s entered
exams and
learning style

App
main
screen

Click the smart
calendar data
screen from
the side
navigation bar,
choose to
recalculate
revision slots

Provided the smart
features are switched on,
the system will generate
revision slots and populate
the revision database
based on existing items
and the user’s learning
style, all whilst a progress
dialog is displayed. The
dialog is presented to
explain to the user that the
revision has been created
and that subsequent
generation will get the
opportunity to compare
with old data.

Pass
14/03/17

28 Recalcula
te Smart
Revision
Slots and
Compare

The smart
revision slots
previously
allocated will
be
recalculated
and entered
into the
system

App
main
screen

Click the smart
calendar data
screen from
the side
navigation bar,
choose to
recalculate
revision slots

As above, but after
generation, a dialog is
presented giving the user
the option to keep the old,
keep the new, or compare
the old and new.
Comparing the two will
show a list of all the old
and new revision side by
side on a per day basis. In
addition the number of
revision slots for each
module is compared.

Pass
12/03/17

29 View
Revision

View a
generated
revision from
the timetable
tab and view it
as an
individual item

App
main
screen

Click the
timetable tab,
click a
previously
generated
revision

The system shows all the
revision’s data on an
individual screen.

Pass
08/03/17

30 Edit
Revision
to
Erroneou
s Data

Attempt to
edit a
previously
generated
revision by
entering all
empty fields

App
main
screen

Click the
timetable tab,
click a
previously
generated
revision, click
the “edit”
floating action
button, delete
all data, click
“edit”

Once edit has been clicked,
the system shows the add
revision screen with
populated fields. Entering
all empty fields will show
an error message
informing the user of all
the incorrectly entered
fields: module, title, date,
start and end time.

Pass
08/03/17

Russell Waterson 1330057

48 | P a g e

31 Edit
Revision

Edit a
previously
generated
revision using
real data

App
main
screen

Click the
timetable tab,
click a
previously
generated
revision, click
the “edit”
floating action
button, enter
real data to all
data fields,
click “edit”

Once edit has been clicked,
the system shows the add
revision screen with
populated fields. The
system accepts the data
and adds it to the revision
database. It then returns
to the timetable tab.

Pass
08/03/17

32 Delete
Revision

Delete a
previously
generated
revision

App
main
screen

Click the
timetable tab,
click a
previously
generated
revision, click
delete and
accept the
dialog

The system deletes the
revision from the revision
database.

Pass
08/03/17

33 Backup
Database
Text File
to Google
Drive

After entering
data into each
of the
databases,
back them up
to Google
Drive in the
form of a text
file

App
main
screen

Click the last
backup button
from the
bottom of the
side
navigation bar,
click yes to
backup text
file

If it is the first backup, the
system will ask the user
which Google Drive
account they wish to back
up to, they are then
presented with the ability
to backup a generated text
file of the database to
Drive, clicking yes will save
this file to their selected
location in Google Drive

Pass
08/03/17

34 Backup
Raw
Database
File to
Google
Drive

After entering
data into each
of the
databases,
back them up
to Google
Drive in the
raw database
form

App
main
screen

Click the last
backup button
from the
bottom of the
side
navigation bar,
click yes or no
to backup text
file, then click
yes to backup
the database
file

If it is the first backup, the
system will ask the user
which Google Drive
account they wish to back
up to, after clicking
through the text backup,
they are presented with
the option to backup the
raw database file saved on
the phone’s memory,
clicking yes will save this
file to their selected
location in Google Drive

Pass
08/03/17

35 Import
Event
from
Google
Calendar

Connect app
to Google
Calendar and
import an
event from

App
Main
Screen

Click the
import Google
Calendar
screen from
the side
navigation bar,

When the application is
connected to the user’s
Google Calendar, a list of
existing events will be
displayed. The user can
then select all the events

Pass
18/03/17

Russell Waterson 1330057

49 | P a g e

existing
calendar

enter the
number of
events, tick
events, click
import

they wish to add. When
save is clicked, all the
chosen events will be
added to the local events
database

36 Activate
Phone
Muting

Activate
phone muting
so that during
work hours,
the phone will
mute
automatically

Any
screen
on the
phone,
even
out-
side of
app

Click the
settings screen
from the side
navigation bar,
activate Mute
Phone During
Work Hours

When active, the mobile
device will automatically
set its ring profile to silent
at the user’s preferred
start time, and then to
normal at the user’s
preferred end time

Pass
14/03/17

10.4 UI and Application Exerciser Monkey
The Monkey is a program that runs on an Android device designed to stress-test an application in

development by generating a pseudo-random stream of user events, such as clicks, touches, and

gestures, as well as several system-level events, allowing for testing in a random, yet repeatable

manner ("UI/Application Exerciser", 2017). During the running of Monkey, it watches the system

under tests and will stop generating events if either the application crashes or becomes

unresponsive, or if it receives any sort of unhandled exception.

Monkey is run from the command line, where the application package to be tested can be specified,

as well as the number of events to be injected. The Smart Revision Calendar application was tested

with 50,000 events injected into it using the command as seen below. Throughout the total elapsed

time of 228627ms (3 minutes, 48.627 seconds), the application did not crash, become unresponsive,

or throw any unhandled exceptions, therefore passed the Monkey tests.

$ adb shell monkey -p com.russell.smartrevisioncalendar -v 50000

10.5 Performance Testing
In conjunction with the stress testing done in section 10.4, performance testing was also carried out,

and therefore complying with the performance non-functional requirements laid out in section 6.4.

Performance testing is a testing technique performed to examine the responsiveness and stability

under varying workloads ("Performance Testing", 2017). The performance tests undertaken looked

to observe the execution times, memory usage, and CPU stress, during normal operations and

intensive operations. This was done using the Android Monitor built into Android studio. Figure 10-2

shows a snippet of the memory and CPU usage during this time. It shows that there were no memory

leaks, and never a point where the CPU usage was above 20%.

Figure 10-2 Android Monitor during Performance Test

Russell Waterson 1330057

50 | P a g e

10.6 Acceptance Testing – Alpha Testing
Acceptance testing is a testing technique that is used to determine the level of satisfaction against

the requirements and verify it is acceptable for the end user ("Acceptance Testing", 2017). Of the

various forms of acceptance testing, alpha tests were the ones carried out, of which consisted of two

parts; the first was to carry out routine tasks expected in the day-to-day operation of the app, and

the second was to try and break the app in whatever way possible. Whether this was through

intentionally inputting erroneous data, or cancelling operations midway through, the aim was to

bring to surface any bugs overlooked in the previous rounds of testing.

The routine tasks consisted of:

- Create at least 4 exams

- Create at least 4 classes

- Create at least 2 activities

- Enter smart revision data for your learning style (and activate daily debriefs)

- Generate revision

- After a couple of days of revision and debriefs check for recommendations

- Backup your data to Google Drive

- Now, try and break the application!

When reporting findings, this not only included the bugs found, but also any suggested

improvements, what they liked, what they disliked, and what they expected to see but did not. The

bugs that were found, required a log of the exact steps taken to trigger it, as well as the

consequences of that bug. These were then all taken, and included in the bug reports filed from the

other test stages, as explained further in section 10.7.

Another advantage for the alpha testing, was the ability to test the application on a wider range of

devices, of which had different screen resolutions, Android versions, and custom original equipment

manufacturer (OEM) skins. Included in the brief were questions asking for these details, from which

it could be concluded that the application was confirmed working on a wide range of devices as seen

in the table below:

Device Android
Version

Screen
Resolution

DPI and
density

OEM Skin Rooted?

Huawei Nexus 6P 7.1.1 1440 x 2560 ~518 / xxhdpi Stock No

LG Nexus 4 5.1 768 x 1280 ~318 / hdpi Stock Yes

Huawei P9 7.0 1080 x 1920 ~423 / xhdpi Emotion UI 4.1 No

OnePlus One 6.0.1 1080 x 1920 ~401 / xhdpi CyanogenMod 13 No

Samsung Galaxy S6 7.0 1440 x 2560 ~577 / xxhdpi TouchWiz UI No

Sony Xperia Z3 Compact 6.0 720 x 1280 ~319 / hdpi Sony Xperia Home No

10.7 Bug Report
Over the course of the previously mentioned tests, a detailed and extensive Bug Report file was

maintained. The report covers all the essential details required to reproduce the bug and eventually

resolve it. With the addition of the ID and name, the fields detailed were:

- Priority: the more critical the bug, the higher the priority and therefore the quicker it was

resolved

- Type: whether it was a bug or suggested feature or improvement

- Description: including details on how to reproduce the bug

- Found during: what means of testing the bug was unearthed

- Status: whether the bug had been set as resolved, infeasible, intended behaviour, or not

reproducible, along with the date it was set

Russell Waterson 1330057

51 | P a g e

11 PROJECT MANAGEMENT

11.1 Software Engineering Process
During the course of this project, a strict quality software engineering approach was taken. Once the

functional requirements of the project had been established, they were split up into deliverable

components and estimated development times assigned to each. This allowed a view into the total

timescale of completion for the project’s core functionality. As with all projects, contingency must be

factored into the plan, as at any stage, something can go wrong, as detailed in section 6.5. Figure 11-

1 shows the week by week plan created at the very start of the project. Whilst the eventual project

did not strictly follow this timeline, as shown in the Gantt Chart in Appendix C, it was a very good

indicator of roughly where the production should be at any given moment. The only major deviation

from the original plan, was the swapping of intensive testing with the linking of the personal calendar

via Google Calendar API, of which is not a fundamental feature of the application. This was mainly

due to the fact that there was potential for a large number of issues to be brought to the surface

during testing, as projected in section 6.5, and this allowed additional time to resolve them.

Figure 11-1 Week Plan

Once this breakdown was in place, the agile development approach was undertaken, whereby the

delivery of working software was continuous and frequent, thus meeting one of the twelve principles

outlined in the agile manifesto. “Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale” – (Beck et al., 2001). Using agile, also

allowed for an evolutionary development, where the planning was allowed to be adaptable enabling

easy response to any change that may occur during this time. This was paramount, as later in

development, it was decided that an option to view the difference in new and old revision was to be

added, which would not have otherwise been possible.

An alternative method of software development would have been to use a more traditional

approach called waterfall. This is a sequential process where the stages of development follow on

from each other, and include, but not exclusive to, plan, design, build, test, production, and maintain

(Bowes, 2014). This method however was not undertaken due to the fact that it is non-iterative,

meaning that any changes in the requirements would be very difficult to incorporate into the project

once development had begun.

11.2 Version Control
As explained in section 7.5, Git was used a means of version control for the development of this

application. A consistent process was used throughout the project to ensure that new code was kept

stored safely on the remote repository, and no code was overwritten or lost.

• System
design

• Write core
code for
achitecture
of system

Week
≤1

Create
Database with

ADD
functionality

Week
2

Main GUI
Screens and

Timetable GUI

Week
3

Create
foundation for

smart
algorithm

Week
4-5

• Start up
Process

• Database
deletion and
editing

Week
6

• End of day
debriefs

• Cloud
Backups

Week
7

Link
personal
calendar

Week
8

• Unit and
Functional
Tests

• Small role
out to
testers

Week
9

Tweaks and
bug fixes
based on

tests

Week
10

Contingency,
Extra

Features,
and Polish

Week
11

Russell Waterson 1330057

52 | P a g e

As explained in section 11.1, agile development was used as a software engineering practise. When a

new feature was to be implemented, a new branch was created, with a name similar to the

functionality to be added. All the code for this feature was programmed on this new branch. At

milestones of the feature’s development, as well as at the conclusion of, the code was “committed”

and “pushed” to the remote repository. A link to the Git repository can be found in within the

supplied project zip file, as detailed in Appendix A. Once completion of the feature was believed to

have been achieved, the pushed code on the branch would be submitted for a merge request. For

the branch’s merger into the master code to be accepted, it had to go through a code review, where

it would be evaluated to see if it met the overall standards of the project. Once it has passed code

review, the branch would be merged into master, and redundant branch deleted. All local

repositories would then be updated with the latest code.

For example, Figure 11-2 shows a snippet from the Git graph of events moving in chronological order

from bottom to top. It firstly shows code being pushed to a new branch, later identified as

“Revision_Generation_Diff”. An explanation of the code being added to that branch is given,

ensuring that the exact purpose of that commit is known to anyone who views that branch. After

this, and after the code review, the new branch is merged into master. The same thing applies for the

next branches commit, push, and merge. Clicking on the summary of the push, will display the full

explanation of the push, where for this “Bug_Fixes_2” branch, is an extensive list of fixes and

improvements.

Figure 11-2 Git history graph snippet

Included within the Git repo was a readme file. To write an effective and well formatted readme file

on Git, use of text-to-HTML conversion tool called Markdown is required (Gruber, 2004). The readme

file included, of which utilised Markdown, briefly outlined the abstract of the project that was stored

within the repository, and was therefore displayed on the projects home page and repository files

page.

11.3 Supervisor Meets
Once a week, a supervisor meeting was set up, where the progress from the previous week was

discussed as well as the aims for the coming week. In addition to this, weekly logs were written also

containing the events and progress made in the preceding week.

11.4 Project Issues
During the project’s development, fortunately, there were no major setbacks encountered; there

were however minor problems. These included time consuming tasks taking longer to complete than

originally predicted, and a large number of bugs unearthed during the extensive testing. Fortunately,

both of these eventualities had been accounted for. Firstly, contingency had been factored into the

overall timeline, both before and after testing, enabling for any tasks that had overran to be properly

completed to a high standard, without the worry of running out of time. Secondly, a significant

proportion of time had been dedicated to bug fixes and improvements, therefore any bugs found

during testing were able to be fixed before the application was pushed to production.

Russell Waterson 1330057

53 | P a g e

12 RESULTS AND EVALUATION

12.1 Public Release
After the completion of the testing and development of the application, it was decided that it would

be uploaded to the Google Play Store, the official app store for Android. This was done by creating a

release ready apk file signed with an official developer signature key. As a new key was used, the

APIs had to be re-authorised. A developer account on the Play Store was then created, and the one-

time payment of $25 was made. Uploaded alongside the application, was a description, a series of

screenshots, a feature graphic, and a host of other information including content ratings and app

category.

The Smart Revision Calendar application is currently released to the public via the Google Play Store;

it can be viewed via the link in the supplied zip file as explained in Appendix A. Since its date of

publication, on the 3rd April 2017, it has gained between 50-100 downloads, along with 9 ratings with

an average score of 4.7 stars out of 5 (as of 12th April 2017).

Within the Google Play Developer Console, as well as being able to see number of downloads and

user ratings, there is also the ability to observe an overall crash report of the application. At the time

of writing, there have been no crashes, and no instances of the application not responding (ANR).

The public release of the application looks to be an initial success, which should give it the

momentum to continue to grow. Given the number of downloads and the positive ratings, the

application appears to deliver on the goals initially set out.

12.2 Comparison to Original Specification
In addition to publishing the application, the project was to be evaluated; this includes the product

and the process in which the product was achieved. The initial step for evaluation of the system, was

the comparison of the completed solution with the original specification.

The evaluation of the product was done by looking to the proposed functional requirements, as

outlined in section 6.3, and observing the functional tests in section 10.3, tests based solely on

ensuring the requirements are met. All but one test passed, therefore indicating that the

development of the product was a success, as was in addition the process as well. The reason for the

failing test, was due mainly to the fact that the estimated time taken to implement said feature,

Russell Waterson 1330057

54 | P a g e

would supersede the functionality’s importance within the system, especially given that a similar

feature had previously already been implemented.

The evaluation of the process, was carried out by looking to the project planning discussed in section

11.1, as well as the risk management discussed in section 6.5. This ensured that a clear structure and

process would be undertaken throughout the course of this project. It was concluded that this plan

was an unwavering success without a single oversight. The necessary precautions were made in

terms of contingency planning and allowing for dedicated time for testing and bug fixing. As the

development process stayed on track without any deviations, and was not over ambitious in terms of

time constraints allowed, it meant that additional functionality outside of the initial core

requirements could be implemented; this came in the form of mobile device muting during working

hours. The agile development process worked well for the creation of this product, as it allowed for

evolutionary requirements.

12.3 User Feedback
To further evaluate the product, a user inspection method was employed, requesting that a

collection of 5 individuals perform a heuristic evaluation.

This evaluation consisted of 3 steps, first being a briefing session explaining to the individuals what to

do. Of which, was over a period of 1-2 hours, they each work separately taking the one run through

of the product to familiarise themselves, and the second run through to focus on specific features.

Then, to create a list of usability problems and the feature that instigates it. After its completion, a

debriefing session occurred in which the individuals come together in order to prioritise problems,

where the severity of the problem is indicated by a combination of its frequency, impact, and

persistence.

12.3.1 Reliability and Robustness
To determine the reliability of robustness of the product, both the feedback from the user evaluation

and the results of the unit tests were assessed. Of the 307 unit tests undertaken, 305 of them passed

with only 2 failures; that is a success rate of 99.3%. With the failing two tests being due to

unimplemented features as opposed to unstable software. The feedback from the user evaluation

indicates that the product is both reliable and robust, given the number of problems unearthed were

minimal, and those that were, were trivial and of negligible severity. Further demonstrating this, is

the positive response elicited with the public release of the application to the world.

12.3.2 Performance
To ascertain the performance of the product, the user evaluation and the performance tests of

section 10.5 were reviewed. As stated in the previous section, the responses collected from the user

evaluation were of resounding positivity, and as such, included that of the performance of the

system. The performance tests undertaken and the conclusion of the development, also clearly

demonstrate that the final product has no shortcomings in its performance, both in terms of speed of

calculations, and in terms of responsiveness of all the UI elements.

12.3.3 Heuristic Evaluation
During the design of the product, Jakob Nielsen’s 10 usability principles for interactive design were

utilised to minimise any potential usability issues. Therefore, during heuristic evaluation of the

product, also done during user evaluation, all 10 of the topics encompassed were addressed, despite

being a rule of thumb rather than a specific guideline. Examples for each of the principles are as

follows:

Russell Waterson 1330057

55 | P a g e

Visibility of system status: when generating revision, the system shows a progress dialog; during the

initial start-up steppers, the system always displays the number of steps remaining.

Match between system and real world: all icons in the system represent a real-life counterpart, for

example, the delete icon is a bin, and the edit icon is a pen.

User control and freedom: users often choose system functions by mistake, so every section of the

system can be exited from without any repercussions.

Consistency and standards: the use of Material Design conforms to the standards across most major

Android applications.

Error prevention: all inputs in the system are validated so erroneous data cannot be entered; when

deleting an item, the user is asked if they are sure that they wish to complete the deletion.

Recognition rather than recall: minimising the user’s memory load by using familiar interfaces such

as those found in highly popular applications like Google Calendar.

Flexibility and efficiency of use: whilst the system does not provide any shortcuts for experienced

users, the interface does however remain in a fixed formation allowing for the user to build a muscle

memory induced impression of the system.

Aesthetic and minimalist design: the use of the meticulously crafted Material Design guidelines; the

separation of key components of the system to ensure only the essential and relevant items are on

any one screen at a time.

Help users recognise, diagnose and recover from errors: when a user makes a mistake, or the

system experiences any unexpected behaviour, an alert dialog is displayed showing the user any

errors that may have occurred.

Help and documentation: during the initial boot of the system, as well as at any time via the settings,

the user is presented with instructions showing them how to operate the system.

12.4 Lessons Learned
Over the course of this project, there were many opportunities for learning and numerous chances to

acquire new skills. These were not limited to coding experience, but also in terms of significant fields

of computer science, as well as acceptable software engineering practices.

The skill of Android application development was one gained during the course of this process,

whereby it is best learned through physical practise and application, rather than mere research. In

addition, the previous brevity of which software engineering was covered, was allowed to be put into

practise in a real-world system, thus solidifying the knowledge.

Additional skills acquired, but not limited to, include probabilistic algorithms, database management

and manipulation, Google API handling, and UX processes including sketching, wireframes and

Google’s Material Design Guidelines.

Russell Waterson 1330057

56 | P a g e

13 DISCUSSION

13.1 Achievements
At the completion of this project, the final product stands to be one of great success. Not only does it

meet all the aims and requirements originally set out at the commencement of the project, but it

also has been well received by a large quantity of the public. As of the 12th April 2017, Smart Revision

Calendar stands at a 4.7 star rating with between 50-100 downloads, and a host of positive reviews.

The application looks to have added value within its field, improving productivity and quality of work

to student looking to revise for exams.

As for the process, a very regimented and well thought out strategy was constructed, and throughout

it was followed meticulously, with the only deviations being those from perceptive foresight and

planning.

13.2 Deficiencies
Whilst overall this application and its development were successful, containing a great number of

triumphs, there is always room for improvement. In the product itself, there is the unfortunate lack

of inclusion of the end of revision block debriefs, where the user is able to provide feedback and

notes about the productivity of each individual revision block. As previously stated, its lack of

inclusion was due mainly to that fact that its perceived value was less than the overhead of its

estimated development time.

13.3 Further Development
Where the application currently stands, is at a fully completed and well-polished package that meets

the requirements laid out prior its creation. However, it was developed in such a way, that future

improvements and further development could be implemented. If there were 5 more years’ worth of

development time, here are some features that would be considered for implementation.

Term time: a feature that would allow for greater streamlining of term time work, including

improved scheduling for homework, coursework, and other deadlines. Currently, whilst the app

supports the addition of classes into the system, it currently lacks the ability to specify specific

deadlines such as homework and coursework. The user is able to add them in as exams, and then

vary the content size and priority, but this kind of work is not always carried out in the same way as

revision. Adding this feature should allow the user to be able to continue using the application all

year round, thus improving their productivity outside of the exam season too.

Class configuration sharing: a feature that would allow a user to create their timetable of classes,

exams, and other items, and be able to share their created configuration with, say, a classmate who

has the exact same modules as them. Thus further mitigating the timetable creation time and

decreasing its complexity, alleviating the shortcomings of other timetable solutions, as explained in

section 5.2.

Social aspects: a feature expanding deeper into class config sharing, is the ability to share progress as

well as difficulties in specific tasks with friends. This should allow for an increased productivity due to

the ease of access of targeted, and specific help and support.

Gamification: according to a study done by John Shindler in 2009, games and competition can “raise

the level of interest and excitement while accomplishing essentially the same degree of content

processing” – (Shindler, 2009). As such, a potential addition could be the development of a feature to

Russell Waterson 1330057

57 | P a g e

incorporate some form of gamification into the application, whereby there are incentives and

rewards for completing targets and set task, perhaps without any distractions from the user’s phone.

Digging deeper into the social aspects, being able to share these accolades, should further enhance

the competition.

Smart watch features: according to a press release by the International Data Corporation, wearables

are increasing in popularity, reaching an all-time high with 33.9 million units shipped in the fourth

quarter of 2016, growing 16.9% year over year (Ubrani et al., 2017); including incorporating the use

of smart watch features within the application is apparent. A simple addition so that when the user

should be starting their next revision block, a push notification is sent to their smart watch.

Additionally, this could be useful with users without a smart watch, as the same thing could happen

but just to the phone instead.

Android O: as of 21st of March 2017, the developer preview has been released for the next version of

Android, Android O (Burke, 2017). This gives developers the chance to develop applications to

include specific features upcoming in the next release. Evaluating these features, there are two

potential ones that could be incorporated within this application. First is the use of notification

channels, this involves creating different channels for each distinct type of notification ("Notification

Channels", 2017). For example, one channel could be used for debriefs, one for revision

commencement reminders, and one for social features. The user will then have complete control

over each channel including the notification’s importance, sound, lights, vibration, whether it shows

on the lock screen, and whether it overrides do not disturb. The second feature is the use of the

multi-display support. This could be incorporated by allowing the user to view their timetable on a

remote display or second display, allowing for a different perspective on their calendar, as well as the

opportunity for collaborative work ("Multi-display support", 2017). These two features are just

example of what could be included with the new version of Android, but with continued

development, all future releases could be evaluated for interesting new features to be implemented.

Smart Formula: whilst the smart formula for creating revision is fully functional and operates and

behaves exactly as intended, it can easily become an evolving part of the system, undergoing

continuous enhancements as the system matures. Incorporating pattern matching for example,

would be a great addition, whereby the sequence of generated revision could be checked against

some pre-predicted pattern, potentially improving the consistency of the smart algorithm.

14 CONCLUSION

The main aim of this project has been to help increase the organisation and productivity of people,

particularly students, through the use of an automated timetable creation based on their goals and

learning styles. The system was designed and implemented to meet the goals of an ideal timetable

and scheduling application, whilst including features to incorporate the individuality of learning

styles. These goals were met, thus filling the void where there was previously no perfect solution for

getting the most out of productivity using timetabled revision and learning.

The project has proven that it is possible to evaluate all the results from research and studies into the

field of maximising productivity through various means, and create an all-in-one application to

exploit the peak performances of the human mind.

This project represents an excellent opportunity to deliver a large software project as an individual

and to learn the workings and implementations of Android application development as well as the

workings of the mechanisms to increase productivity and performance.

Russell Waterson 1330057

58 | P a g e

15 REFERENCES
OMG Unified Modeling Language (OMG UML). (2015) [Online]. Available from: http://www.omg.org/spec/UML/2.5/PDF/
[Accessed 04/05 2017].

Software Testing: An ISEB Intermediate Certificate. (2009) Kybernetes, 38 (9): 66-85.

"About SQLite" (2017) About SQLite. [Online]. Available from: http://www.sqlite.org/about.html [Accessed 04/06 2017].

"About TensorFlow" (2017) About TensorFlow. [Online]. Available from: https://www.tensorflow.org/ [Accessed 04/09
2017].

"Acceptance Testing" (2017) Acceptance Testing. [Online]. Available from:
https://www.tutorialspoint.com/software_testing_dictionary/acceptance_testing.htm [Accessed 04/06 2017].

"ADT Plugin" (2015) ADT Plugin (DEPRECATED). [Online]. Available from:
https://developer.android.com/studio/tools/sdk/eclipse-adt.html [Accessed 04/03 2017].

"Android Dashboards" (2017) Home Android Dashboards. [Online]. Available from:
https://developer.android.com/about/dashboards/index.html [Accessed 04/05 2017].

"Android Studio System" (2017) Android Studio System Requirements. [Online]. Available from:
https://developer.android.com/studio/index.html#Requirements [Accessed 04/04 2017].

"Ant Apache" (2017) Apache Ant Apache. [Online]. Available from: http://ant.apache.org/ [Accessed 04/06 2017].

"Apple Developer Program" (2017) Apple Developer Program. [Online]. Available from:
https://developer.apple.com/programs/ [Accessed 04/04 2017].

"Application Fundamentals" (2017) Develop API Guides Introduction Application Fundamentals. [Online]. Available from:
https://developer.android.com/guide/components/fundamentals.html [Accessed 04/04 2017].

"Bottom navigation" (2017) Material Design Components Bottom navigation. [Online]. Available from:
https://material.io/guidelines/components/bottom-navigation.html [Accessed 04/08 2017].

"Building Instrumented" (2017) Develop Training Best Practices for Testing Building Effective Unit Tests Building
Instrumented Unit Tests. [Online]. Available from: https://developer.android.com/training/testing/unit-
testing/instrumented-unit-tests.html [Accessed 04/06 2017].

"Color" (2017) Material Design Style Color. [Online]. Available from: https://material.io/guidelines/style/color.html
[Accessed 04/07 2017].

"Configure Your Build" (2017) Configure Your Build. [Online]. Available from:
https://developer.android.com/studio/build/index.html [Accessed 04/06 2017].

"Cross-Platform Mobile" (2017) Cross-Platform Mobile Development in Visual Studio. [Online]. Available from:
https://msdn.microsoft.com/library/dn771552.aspx [Accessed 04/03 2017].

"Data Storage Options" (2017) Develop API Guides Data Storage Storage Options. [Online]. Available from:
https://developer.android.com/guide/topics/data/data-storage.html [Accessed 04/06 2017].

"DrawerLayout" (2017) Developers Develop DrawerLayout. [Online]. Available from:
https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html [Accessed 04/08 2017].

"Expansion panels" (2017) Material Design Components Expansion panels. [Online]. Available from:
https://material.io/guidelines/components/expansion-panels.html [Accessed 04/07 2017].

"Floating Action Button" (2017) Mat erial Design Components Buttons: Floating Action Button. [Online]. Available from:
https://material.io/guidelines/components/buttons-floating-action-button.html [Accessed 04/08 2017].

"Functional Testing" (2016) Functional Testing. [Online]. Available from:
http://softwaretestingfundamentals.com/functional-testing/ [Accessed 04/06 2017].

"Getting Started with" (2017) Getting Started with the NDK. [Online]. Available from:
https://developer.android.com/ndk/guides/index.html [Accessed 04/04 2017].

"Getting Started" (2017) Google Drive APIs Android Getting Started. [Online]. Available from:
https://developers.google.com/drive/android/get-started [Accessed 04/09 2017].

"Google Inc." (2017) Google Inc Google Play Store Developer Page. [Online]. Available from:
https://play.google.com/store/apps/dev?id=5700313618786177705 [Accessed 04/07 2017].

"Google Play Developer Console" (2017) Google Play Developer Console. [Online]. Available from:
https://play.google.com/apps/publish/ [Accessed 04/04 2017].

"Intel® Core™ i5-4690K" (2017) Support Home Product Specifications Processors Intel® Core™ i5-4690K Processor.
[Online]. Available from: http://ark.intel.com/products/80811/Intel-Core-i5-4690K-Processor-6M-Cache-up-to-3_90-GHz
[Accessed 04/04 2017].

"Introduction" (2017) "Material design Introduction". [Online]. Available from: https://material.io/guidelines/material-
design/introduction.html [Accessed 04/07 2017].

http://www.omg.org/spec/UML/2.5/PDF/
http://www.sqlite.org/about.html
https://www.tensorflow.org/
https://www.tutorialspoint.com/software_testing_dictionary/acceptance_testing.htm
https://developer.android.com/studio/tools/sdk/eclipse-adt.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/studio/index.html#Requirements
http://ant.apache.org/
https://developer.apple.com/programs/
https://developer.android.com/guide/components/fundamentals.html
https://material.io/guidelines/components/bottom-navigation.html
https://developer.android.com/training/testing/unit-testing/instrumented-unit-tests.html
https://developer.android.com/training/testing/unit-testing/instrumented-unit-tests.html
https://material.io/guidelines/style/color.html
https://developer.android.com/studio/build/index.html
https://msdn.microsoft.com/library/dn771552.aspx
https://developer.android.com/guide/topics/data/data-storage.html
https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
https://material.io/guidelines/components/expansion-panels.html
https://material.io/guidelines/components/buttons-floating-action-button.html
http://softwaretestingfundamentals.com/functional-testing/
https://developer.android.com/ndk/guides/index.html
https://developers.google.com/drive/android/get-started
https://play.google.com/store/apps/dev?id=5700313618786177705
https://play.google.com/apps/publish/
http://ark.intel.com/products/80811/Intel-Core-i5-4690K-Processor-6M-Cache-up-to-3_90-GHz
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html

Russell Waterson 1330057

59 | P a g e

"Java Language Environment" (2017) The Java Language Environment. [Online]. Available from:
http://www.oracle.com/technetwork/java/intro-141325.html [Accessed 04/03 2017].

"Javadoc Tool" (2004) Javadoc Tool. [Online]. Available from:
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html [Accessed 04/05 2017].

"javadoc" (2010) javadoc - The Java API Documentation Generator. [Online]. Available from:
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/solaris/javadoc.html [Accessed 04/05 2017].

"Layouts" (2017) Develop API Guides User Interface Layouts. [Online]. Available from:
https://developer.android.com/guide/topics/ui/declaring-layout.html [Accessed 04/04 2017].

"Meet Android Studio" (2017) Meet Android Studio. [Online]. Available from:
https://developer.android.com/studio/intro/index.html [Accessed 04/03 2017].

"Multi-display support" (2017) Preview Android O Features and APIs Multi-display support. [Online]. Available from:
https://developer.android.com/preview/api-overview.html#mds [Accessed 04/08 2017].

"Nexus 6P Specifications" (2017) Huawei Mobile Phones Nexus 6P Specifications. [Online]. Available from:
http://consumer.huawei.com/en/mobile-phones/nexus6p/specifications.htm [Accessed 04/04 2017].

"Notification Channels" (2017) Develop Android O Features and APIs Notification Channels. [Online]. Available from:
https://developer.android.com/preview/features/notification-channels.html [Accessed 04/08 2017].

"OAuth 2.0" (2017) OAuth 2.0. [Online]. Available from: https://oauth.net/2/ [Accessed 04/09 2017].

"Performance Testing" (2017) Performance Testing. [Online]. Available from:
https://www.tutorialspoint.com/software_testing_dictionary/performance_testing.htm [Accessed 04/07 2017].

"Platform Architecture" (2017) Develop API Guides Platform Architecture. [Online]. Available from:
https://developer.android.com/guide/platform/index.html [Accessed 04/04 2017].

"PreferenceFragment" (2017) PreferenceFragment. [Online]. Available from:
https://developer.android.com/reference/android/preference/PreferenceFragment.html [Accessed 04/09 2017].

"Round Icon Resources" (2017) Android 7.1 for Developers Round Icon Resources. [Online]. Available from:
https://developer.android.com/about/versions/nougat/android-7.1.html#circular-icons [Accessed 04/03 2017].

"Run Apps on the" (2017) Run Apps on the Android Emulator. [Online]. Available from:
https://developer.android.com/studio/run/emulator.html [Accessed 04/04 2017].

"Size and Format" (2017) Launcher Icons Size and Format. [Online]. Available from:
https://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html#size [Accessed 04/03 2017].

"Status Bar Icons" (2017) Develop API Guides Status Bar Icons. [Online]. Available from:
https://developer.android.com/guide/practices/ui_guidelines/icon_design_status_bar.html [Accessed 04/03 2017].

"Steppers" (2017) Material Design Components Steppers. [Online]. Available from:
https://material.io/guidelines/components/steppers.html [Accessed 04/07 2017].

"Testing UI" (2017) Develop Training Best Practices for Testing Automating UI Tests Testing UI for a Single App. [Online].
Available from: https://developer.android.com/training/testing/ui-testing/espresso-testing.html [Accessed 04/06 2017].

"Toasts" (2017) Develop API Guides User Interface Toasts. [Online]. Available from:
https://developer.android.com/guide/topics/ui/notifiers/toasts.html [Accessed 04/08 2017].

"Tooltips" (2017) Material Design Components Tooltips. [Online]. Available from:
https://material.io/guidelines/components/tooltips.html [Accessed 04/08 2017].

"UI/Application Exerciser" (2017) Android Studio User Guide UI/Application Exerciser Monkey. [Online]. Available from:
https://developer.android.com/studio/test/monkey.html [Accessed 04/07 2017].

"What is Wireframing" (2017) Home FAQs What is wireframing? [Online]. Available from:
http://www.experienceux.co.uk/faqs/what-is-wireframing/ [Accessed 04/07 2017].

"XML Tutorial" (2017) XML Tutorial. [Online]. Available from: https://www.w3schools.com/xml/ [Accessed 04/04 2017].

Ariely, D. and Wertenbroch, K. (2002) PROCRASTINATION, DEADLINES, AND PERFORMANCE: Self-Control by
Precommitment. American Psychological Society, 13 (3): 219-224.

Beck, K., Beedle, M., van Bennekum, A. et al. (2001) Manifesto for Agile Software Development. [Online]. Available from:
http://agilemanifesto.org/ [Accessed 04/08 2017].

Bolton, D. (2016) 5 Reasons to Use C++ for Android Development. [Online]. Available from:
http://insights.dice.com/2016/02/03/5-reasons-to-use-c-for-android-development/ [Accessed 04/04 2017].

Bowes, J. (2014) Agile vs Waterfall: Comparing project management methods. [Online]. Available from:
https://manifesto.co.uk/agile-vs-waterfall-comparing-project-management-methodologies/ [Accessed 04/08 2017].

Burke, D. (2017) O-MG, the Developer Preview of Android O is here! [Online]. Available from: https://android-
developers.googleblog.com/2017/03/first-preview-of-android-o.html [Accessed 04/08 2017].

Cannizzaro, F. (2016) Material Stepper. 1.2.2 edn, GitHub, https://github.com/fcannizzaro/material-stepper.

Chacon, S. and Straub, B. (2014) Pro Git. 2nd ed. Apress.

http://www.oracle.com/technetwork/java/intro-141325.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/solaris/javadoc.html
https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/studio/intro/index.html
https://developer.android.com/preview/api-overview.html#mds
http://consumer.huawei.com/en/mobile-phones/nexus6p/specifications.htm
https://developer.android.com/preview/features/notification-channels.html
https://oauth.net/2/
https://www.tutorialspoint.com/software_testing_dictionary/performance_testing.htm
https://developer.android.com/guide/platform/index.html
https://developer.android.com/reference/android/preference/PreferenceFragment.html
https://developer.android.com/about/versions/nougat/android-7.1.html#circular-icons
https://developer.android.com/studio/run/emulator.html
https://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html#size
https://developer.android.com/guide/practices/ui_guidelines/icon_design_status_bar.html
https://material.io/guidelines/components/steppers.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/guide/topics/ui/notifiers/toasts.html
https://material.io/guidelines/components/tooltips.html
https://developer.android.com/studio/test/monkey.html
http://www.experienceux.co.uk/faqs/what-is-wireframing/
https://www.w3schools.com/xml/
http://agilemanifesto.org/
http://insights.dice.com/2016/02/03/5-reasons-to-use-c-for-android-development/
https://manifesto.co.uk/agile-vs-waterfall-comparing-project-management-methodologies/
https://android-developers.googleblog.com/2017/03/first-preview-of-android-o.html
https://android-developers.googleblog.com/2017/03/first-preview-of-android-o.html
https://github.com/fcannizzaro/material-stepper

Russell Waterson 1330057

60 | P a g e

Cirillo, F. (2007) The Pomodoro Technique (The Pomodoro). Vol. 1.3.

Darrow, B. (2015) Google Drive claims one million paying customers, er, organizations. [Online]. Available from:
http://fortune.com/2015/09/21/google-drive-1m-paid-users/ [Accessed 04/09 2017].

Eason, J. (2015) An update on Eclipse Android Developer Tools. [Online]. Available from: https://android-
developers.googleblog.com/2015/06/an-update-on-eclipse-android-developer.html [Accessed 04/03 2017].

GDJ (2016) Open Clip Art Brain Light Bulb. [Online]. Available from: https://openclipart.org/detail/266221/brain-light-bulb
[Accessed 04/03 2017].

Gosling, J. Joy, B. Steele, G. et al. (2015) The Java® Language Specification Java SE 8 Edition. 5th ed. New Jersey, United
States: Pearson Education (US), Addison-Wesley Educational Publishers Inc.

Goyvaerts, J. (2016) Regular-Expressions.info. [Online]. Available from: http://www.regular-expressions.info/ [Accessed
04/09 2017].

Gruber, J. (2004) Daring Fireball: Markdown. [Online]. Available from: https://daringfireball.net/projects/markdown/
[Accessed 04/03 2017].

Hall, E.M. (1998) Managing Risk: Methods for Software Systems Development. Longman, Harlow, Essex, U.K: Addison-
Wesley.

Halverson, T. and Hornof, A.J. (2004) Link colors guide a search. CHI '04 Extended Abstracts on Human Factors in
Computing Systems, 1367-1370.

Kainulainen, P. (2004) Getting Started With Gradle. [Online]. Available from: https://www.petrikainulainen.net/getting-
started-with-gradle/ [Accessed 04/06 2017].

Kanak, A. (2016) Android Week View. 1.2.6 edn, GitHub, https://github.com/alamkanak/Android-Week-View.

Morocho, D. (2017) OneCalendarView. 3.1.1 edn, GitHub,
https://github.com/MorochoRochaDarwin/OneCalendarView?utm_source=android-
arsenal.com&utm_medium=referral&utm_campaign=5414.

Munoz, A. (2014) Machine Learning and OptimizationPhD, Courant Institute of Mathematical Sciences, New York, NY.

Newport, C. (2008) Fixed-Schedule Productivity: How I Accomplish a Large Amount of Work in a Small Number of Work
Hours. [Online]. Available from: http://calnewport.com/blog/2008/02/15/fixed-schedule-productivity-how-i-accomplish-a-
large-amount-of-work-in-a-small-number-of-work-hours/ [Accessed 04/10 2017].

Nielsen, J. (1994) Usability Inspection Methods. John Wiley & Sons.

Nurik, R. (2017) Android Asset Studio. GitHub, http://romannurik.github.io/AndroidAssetStudio/.

Pearce, S. (2013) GitSvnComparison. [Online]. Available from: https://git.wiki.kernel.org/index.php/GitSvnComparsion
[Accessed 04/05 2014].

Pearson, R. and van Schaik, P. (2003) The effect of spatial layout of and link color in Web pages on performance in a visual
search task and interactive search task. International Journal of Human-Computer Interaction, 59 327-353.

Pope, N.G. (2016) HOW THE TIME OF DAY AFFECTS PRODUCTIVITY: EVIDENCE FROM SCHOOL SCHEDULES. THE REVIEW OF
ECONOMICS AND STATISTICS, 98 (1): 1-11.

Robertson, S. and Robertson, J.C. (2006) Mastering the Requirement Process. 2nd ed. Boston, Mass.; London: Addison-
Wesley Professional.

Rouse, M. (2017) unit testing. [Online]. Available from: http://searchsoftwarequality.techtarget.com/definition/unit-testing
[Accessed 04/06 2017].

Rouse, M. (2016) integrated development environment (IDE). [Online]. Available from:
http://searchsoftwarequality.techtarget.com/definition/integrated-development-environment [Accessed 04/03 2017].

Rouse, M. (2014) entity relationship diagram. [Online]. Available from: http://searchcrm.techtarget.com/definition/entity-
relationship-diagram [Accessed 04/06 2017].

Shindler, J. (2009) Transformative Classroom Management: Positive Strategies to Engage All Students and Promote a
Psychology of Success. 1st ed. Jossey Bass.

Shneiderman, B. Plaisant, C. Cohen, M. et al. (2016) Designing the User Interface : Strategies for Effective Human-
Computer Interaction. 6th Revised ed. United States: Pearson Education (US).

StepstoneTech (2017) Android Material Stepper. 3.2nd edn, GitHub, https://github.com/stepstone-tech/android-material-
stepper.

Stevens, P. and Pooley, R.J. (2000) Using UML: Software Engineering with Objects and Components. Updated ed. Addison-
Wesley.

Sui, L. (2016) Strategy Analytics: Android Captures Record 88 Percent Share of Global Smartphone Shipments in Q3 2016.
[Online]. Available from: https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-press-
releases/strategy-analytics-press-release/2016/11/02/strategy-analytics-android-captures-record-88-percent-share-of-
global-smartphone-shipments-in-q3-2016#.WO14C9LysuV [Accessed 04/04 2017].

Ubrani, J., Llamas, R. and Shirer, M. (2017) Wearables Aren't Dead, They're Just Shifting Focus as the Market Grows 16.9%
in the Fourth Quarter, According to IDC. [Online]. Available from:

http://www.idc.com/getdoc.jsp?containerId=prUS42342317 [Accessed 04/08 2017].

http://fortune.com/2015/09/21/google-drive-1m-paid-users/
https://android-developers.googleblog.com/2015/06/an-update-on-eclipse-android-developer.html
https://android-developers.googleblog.com/2015/06/an-update-on-eclipse-android-developer.html
https://openclipart.org/detail/266221/brain-light-bulb
http://www.regular-expressions.info/
https://daringfireball.net/projects/markdown/
https://www.petrikainulainen.net/getting-started-with-gradle/
https://www.petrikainulainen.net/getting-started-with-gradle/
https://github.com/alamkanak/Android-Week-View
https://github.com/MorochoRochaDarwin/OneCalendarView?utm_source=android-arsenal.com&utm_medium=referral&utm_campaign=5414
https://github.com/MorochoRochaDarwin/OneCalendarView?utm_source=android-arsenal.com&utm_medium=referral&utm_campaign=5414
http://calnewport.com/blog/2008/02/15/fixed-schedule-productivity-how-i-accomplish-a-large-amount-of-work-in-a-small-number-of-work-hours/
http://calnewport.com/blog/2008/02/15/fixed-schedule-productivity-how-i-accomplish-a-large-amount-of-work-in-a-small-number-of-work-hours/
http://romannurik.github.io/AndroidAssetStudio/
https://git.wiki.kernel.org/index.php/GitSvnComparsion
http://searchsoftwarequality.techtarget.com/definition/unit-testing
http://searchsoftwarequality.techtarget.com/definition/integrated-development-environment
http://searchcrm.techtarget.com/definition/entity-relationship-diagram
http://searchcrm.techtarget.com/definition/entity-relationship-diagram
https://github.com/stepstone-tech/android-material-stepper
https://github.com/stepstone-tech/android-material-stepper
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-press-releases/strategy-analytics-press-release/2016/11/02/strategy-analytics-android-captures-record-88-percent-share-of-global-smartphone-shipments-in-q3-2016#.WO14C9LysuV
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-press-releases/strategy-analytics-press-release/2016/11/02/strategy-analytics-android-captures-record-88-percent-share-of-global-smartphone-shipments-in-q3-2016#.WO14C9LysuV
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-press-releases/strategy-analytics-press-release/2016/11/02/strategy-analytics-android-captures-record-88-percent-share-of-global-smartphone-shipments-in-q3-2016#.WO14C9LysuV
http://www.idc.com/getdoc.jsp?containerId=prUS42342317

Russell Waterson 1330057

61 | P a g e

16 APPENDICES

A Structure of project ZIP

Readme file

This readme file will explain the structure of the supplied ZIP file, as well as how to run the code of

the application.

Code

All the code for the Smart Revision Calendar application can be can be found in the

SmartRevisionCalendar/app/src/main directory within the zip. All of the instrument espresso test

cases can be found in the SmartRevisionCalendar/app/src/androidTest directory.

How to run the application

The application can be run in a number of ways, from easiest to hardest:

- Download the application onto an Android smart phone via the provided app store link

- Download the application onto an Android smart phone using the provided apk file

- Import the code to the application into Android Studio, either via the Git repo through the

link provided (VCS -> Checkout from version control -> Git) or using the provided code (File ->

New -> Import Project), build the project, then run it either via an emulator or via an Android

smart phone.

The unit tests can be run by following the steps in the third option above, and instead of choosing

run, locate the androidTest folder, right click on it and select “Run Tests”.

Write up

The project write up, is the “Russell Waterson 1330057 Final Year Project Report.pdf” file.

Wireframe

The interactive wireframe created as part of the UI design, can be accessed via the Revision Calendar

Wireframe folder, and opening index.html with a web browser. A browser extension called

JustInMind is required to operate the wireframe.

Javadoc

The generated Javadoc for the project can be accessed via Javadoc folder, and opening index.html

with a web browser.

Link to app store

A link to the applications page on Google Play Store can be found through the “App in Google Play

Store” link.

Link to repository

A link to the projects Git repository can be found through the “Git Repository” link.

Survey

A link to the online survey created at the start of the project for requirements gathering, can be

found through the “Requirements Gathering Survey” link.

Russell Waterson 1330057

62 | P a g e

B Class Diagram

Russell Waterson 1330057

63 | P a g e

C Gantt Chart

Russell Waterson 1330057

64 | P a g e

D Unit Tests
Test Expected Output Result

Google Drive Backups

Attempt backup with all empty
databases

Backs up to Google Drive with a text file of just headers and a
DB file with no records

Pass

Attempt backup with all
databases containing data

Backs up to Google Drive with a text file and DB file both
containing all previously entered records

Pass

Attempt backup with mixture of
empty and populated databases

Backs up to Google Drive with a text file and DB file both
containing all previously entered records with some empty
tables

Pass

Cancel the upload of the text file The text file should not be uploaded to Drive Pass

Cancel the upload of the
database file

The database file should not be uploaded to Drive Pass

Check date and time of last
upload

After a backup, the last backup time should change to the
current time

Pass

Activity Component

Create new Activity Component The reusable custom component for displaying an activity will
be created, one for each activity

Pass

Set activity The component will show the activity title to be the same as
the text passed into this method

Pass

Set time day text The component will show the activity time and day to be the
text passed into this method

Pass

Set repeat – true Will display the repeat icon Pass

Set repeat – false Will not display the repeat icon Pass

Set coloured line Will set the line to the colour that was passed in Pass

Class Component

Create new Class Component The reusable custom component for displaying a class will be
created, one for each class

Pass

Set module title text The component will show the class module and title to be the
same as the text passed into this method

Pass

Set teacher room text The component will show the class teacher and room to be the
same as the text passed into this method

Pass

Set time day text The component will show the class time and day to be the text
passed into this method

Pass

Set repeat – true Will display the repeat icon Pass

Set repeat – false Will not display the repeat icon Pass

Set coloured line Will set the line to the colour that was passed in Pass

Exam Component

Create new Exam Component The reusable custom component for displaying an exam will be
created, one for each exam

Pass

Set module title text The component will show the exam module and title to be the
same as the text passed into this method

Pass

Set date time text The component will show the exam date and time to be the
text passed into this method

Pass

Set days to go – future The method will calculate and then show in the component
how many days to go based on the date value that was passed
in

Pass

Set days to go – today The method will calculate and then show in the component 0
days to go given the date value that was passed in is today

Pass

Set days to go – past The method will calculate and then show in the component
how many days has elapsed since the date value that was
passed in

Pass

Set days to go – invalid date The method will attempt to parse the date and then show in
the component that it is an unknown number of days to go

Pass

Russell Waterson 1330057

65 | P a g e

Set priority – priority of 0 The component will show 0 filled in drawable views all with the
outline of the passed in colour

Pass

Set priority – priority between 1
and 5 (inclusive)

The component will show filled in drawable views the same as
the priority number passed in from left to right, all with the
same colour and outline colour as the passed in colour

Pass

Set priority – priority greater than
5

This case should never happen due to input validation;
however, it handles it by filling in all the drawable views, all
with the same colour and outline colour as the passed in colour

Pass

Set coloured line Will set the line to the colour that was passed in Pass

Revision Diff Component

Create new Revision Diff
Component

The reusable custom component for comparing old revision in
the database with new revision will be created, one for each
day to compare

Pass

Set revision date The component will show the date of revision to be the same
as the text passed into this method

Pass

Set old revision The component will show the all the old revision to be the text
passed into this method

Pass

Set new revision The component will show the all the new revision to be the
text passed into this method

Pass

Database Helper

Insert class data The new class record will be added to the class table in the
database

Pass

Get all class data All records from the class table is returned Pass

Update class data A selected class record will be updated with the new values
passed in

Pass

Delete class data A selected class record will be deleted from the class table in
the database

Pass

Insert activity data The new activity record will be added to the activity table in
the database

Pass

Get all activity data All records from the activity table is returned Pass

Update activity data A selected activity record will be updated with the new values
passed in

Pass

Delete activity data A selected activity record will be deleted from the activity table
in the database

Pass

Insert exam data The new exam record will be added to the exam table in the
database

Pass

Get all exam data All records from the exam table is returned Pass

Update exam data A selected exam record will be updated with the new values
passed in

Pass

Delete exam data A selected exam record will be deleted from the exam table in
the database

Pass

Insert revision data The new revision record will be added to the revision table in
the database

Pass

Get all revision data All records from the revision table is returned Pass

Update revision data A selected revision record will be updated with the new values
passed in

Pass

Delete revision data A selected revision record will be deleted from the revision
table in the database

Pass

Insert debrief data The new debrief record will be added to the debrief table in
the database

Pass

Get all debrief data All records from the debrief table is returned Pass

Day Debrief

Submit daily debrief A new debrief record containing all the entered data will be
added to the debrief table in the database

Pass

Do not submit daily debrief A debrief record will not being added to the debrief table Pass

Notification Event Receiver

Russell Waterson 1330057

66 | P a g e

Setup alarm An alarm is setup to be trigger at the set time and repeating at
the set interval

Pass

Cancel alarm The previously setup alarm is cancelled as well as any other
repeating occurrences

Pass

Notification Intent Service

Process start notification A notification is built and shown from anywhere on the phone,
containing the set title, context text, colour, and icon.

Pass

Try to display notification when
there has been no revision on
that day

The notification will not be displayed when there is no revision
for that particular day

Pass

Notification Service Start Receiver

Reboot System while before end
of day and daily debriefs on

The debrief notification should not be displayed Pass

Reboot System while after end of
day and daily debriefs on

The debrief notification should be displayed Pass

Change System Time Zone while
before end of day and daily
debriefs on

The debrief notification should not be displayed Pass

Change System Time Zone while
after end of day and daily
debriefs on

The debrief notification should be displayed Pass

Change System Clock while
before end of day and daily
debriefs on

The debrief notification should not be displayed Pass

Change System Clock while after
end of day and daily debriefs on

The debrief notification should be displayed Pass

All above tests while daily
debriefs are off

The debrief notification should not be displayed Pass

Reboot System while before start
of day and mute phone on

The phone will be set to normal ring setting Pass

Reboot System while after start
of day and before end of day and
mute phone on

The phone will be set to mute setting Pass

Reboot System while after end of
day and mute phone on

The phone will be set to normal ring setting Pass

Change System Time Zone while
before start of day and phone
mute on

The phone will be set to normal ring setting Pass

Change System Time Zone while
after start of day and before end
of day and mute phone on

The phone will be set to mute setting Pass

Change System Time Zone while
after end of day and mute phone
on

The phone will be set to normal ring setting Pass

Change System Clock while
before start of day and mute
phone on

The phone will be set to normal ring setting Pass

Change System Clock while after
start of day and before end of
day and mute phone on

The phone will be set to mute setting Pass

Change System Clock while after
end of day and mute phone on

The phone will be set to normal ring setting Pass

All above tests while daily
debriefs are off

The phone will not change ringing state Pass

Import Google Calendar Activity

Russell Waterson 1330057

67 | P a g e

Enter nothing into the events
field

An error message should be displayed informing the user they
must enter a number of events to search

Pass

Enter an invalid number of events An error message should be displayed informing the user of the
range of events that can be entered

Pass

Enter a valid number of events
without Google Play Services
installed

An error message should be displayed informing the user they
must install Google Play Services

Pass

Enter a valid number of events
without a network connection

An error message should be displayed informing the user there
is no network connection available

Pass

Enter a valid number of events
without permission on a device
with API level 23 and above

A runtime permission request form should be displayed
requesting the GET_ACCOUNTS permission

Pass

Enter a valid number of events
without permission on a device
with API level 23 and below

The GET_ACCOUNTS permission should be automatically
accepted

Pass

The GET_ACCOUNTS permission
is accepted

The system should ask the user which Google Account they
wish to use to connect their Google Calendar

Pass

The GET_ACCOUNTS permission
is declined

The system should not continue with importing of the Google
Calendar

Pass

A Google Account is selected The Google Calendar API should be called, then a list of events
should be displayed

Pass

Permission and account had been
previously selected

As above Pass

Events are ticked and save is
pressed

The events should be added to the Events table in the database
with all the correct details and the selected colour

Pass

Activities Fragment

View fragment whilst there are
no activities in the DB

No activities should be displayed, and in its place a message
informing the user there are no activities

Pass

View fragment whilst there is 1
activity in the DB

One activity custom component should be displayed Pass

View fragment whilst multiple
activities are in the DB (enough
to fill more than a screen)

All the activities should be displayed as individual custom
components one after each other, and there should be the
ability to scroll up and down through them all

Pass

Click on an activity component The individual item screen should be displayed, showing all the
information that the chosen activity contains

Pass

Click on the “add” floating action
button

The add new activity screen should be displayed Pass

Return to the activities screen
after new activity has been added

The fragment should be updated to show the newly added
activity at the end of the existing list

Pass

Return to the activities screen
after a new activity was not
added

The fragment should not change and show the same
unchanged activities displayed previously

Pass

Class Fragment

View fragment whilst there are
no classes in the DB

No classes should be displayed, and in its place a message
informing the user there are no classes

Pass

View fragment whilst there is 1
class in the DB

One class custom component should be displayed Pass

View fragment whilst multiple
classes are in the DB (enough to
fill more than a screen)

All the classes should be displayed as individual custom
components one after each other, and there should be the
ability to scroll up and down through them all

Pass

Click on a class component The individual item screen should be displayed, showing all the
information that the chosen class contains

Pass

Click on the “add” floating action
button

The add new class screen should be displayed Pass

Return to the classes screen after
new class has been added

The fragment should be updated to show the newly added
class at the end of the existing list

Pass

Russell Waterson 1330057

68 | P a g e

Return to the classes screen after
a new class was not added

The fragment should not change and show the same
unchanged classes displayed previously

Pass

Exams Fragment

View fragment whilst there are
no exams in the DB

No exams should be displayed, and in its place a message
informing the user there are no exams

Pass

View fragment whilst there is 1
exam in the DB

One exam custom component should be displayed Pass

View fragment whilst multiple
exams are in the DB (enough to
fill more than a screen)

All the exams should be displayed as individual custom
components one after each other, and there should be the
ability to scroll up and down through them all

Pass

Click on an exam component The individual item screen should be displayed, showing all the
information that the chosen exam contains

Pass

Click on the “add” floating action
button

The add new exam screen should be displayed Pass

Return to the exams screen after
new exam has been added

The fragment should be updated to show the newly added
exam at the end of the existing list

Pass

Return to the exams screen after
a new exam was not added

The fragment should not change and show the same
unchanged exams displayed previously

Pass

Individual Item Screen

A class has been clicked to show
individual screen

All text and icon views that are not part of class records should
be removed, and module, title, day, start time, end time,
repeats, room, and teacher will remain, all showing the
selected class’s information. It should show a collapsing toolbar
layout whereby the module and title are in the toolbar, and it is
of the colour of the class.

Pass

Edit class is clicked The same screen for add a class should be displayed, but
instead with title edit class, and all the entries pre-filled with
the selected class

Pass

A class has been edited The class table in the database should update the selected
record with the newly entered fields. It should return to the
individual item screen showing the recently made changes

Pass

A class has not been edited The class table in the database should not be updated. When
returning to the individual item screen, it should remain the
same as before with no changes

Pass

A class is deleted A dialog should appear asking to confirm whether or not to
delete the class. When the class is deleted, it should be
removed from the class table in the database

Pass

A class is not deleted A dialog should appear asking to confirm whether or not to
delete the class. When the class is not deleted, it should remain
in the class table unchanged

Pass

An activity has been clicked to
show individual screen

All text and icon views that are not part of activity records
should be removed, and title, day, start time, end time, and
repeats will remain, all showing the selected activity’s
information. It should show a collapsing toolbar layout
whereby the title is in the toolbar, and it is of the colour of the
activity.

Pass

Edit activity is clicked The same screen for add an activity should be displayed, but
instead with title edit activity, and all the entries pre-filled with
the selected activity

Pass

An activity has been edited The activity table in the database should update the selected
record with the newly entered fields. It should return to the
individual item screen showing the recently made changes

Pass

An activity has not been edited The activity table in the database should not be updated. When
returning to the individual item screen, it should remain the
same as before with no changes

Pass

Russell Waterson 1330057

69 | P a g e

An activity is deleted A dialog should appear asking to confirm whether or not to
delete the activity. When the activity is deleted, it should be
removed from the activity table in the database

Pass

An activity is not deleted A dialog should appear asking to confirm whether or not to
delete the activity. When the activity is not deleted, it should
remain in the activity table unchanged

Pass

An exam has been clicked to
show individual screen

All text and icon views that are not part of exam records should
be removed, and module, title, date, start time, end time,
content size, and priority will remain, all showing the selected
exam’s information. It should show a collapsing toolbar layout
whereby the module and title are in the toolbar, and it is of the
colour of the exam.

Pass

Edit exam is clicked The same screen for add an exam should be displayed, but
instead with title edit exam, and all the entries pre-filled with
the selected exam

Pass

An exam has been edited The exam table in the database should update the selected
record with the newly entered fields. It should return to the
individual item screen showing the recently made changes

Pass

An exam has not been edited The exam table in the database should not be updated. When
returning to the individual item screen, it should remain the
same as before with no changes

Pass

An exam is deleted A dialog should appear asking to confirm whether or not to
delete the exam. When the exam is deleted, it should be
removed from the exam table in the database

Pass

An exam is not deleted A dialog should appear asking to confirm whether or not to
delete the exam. When the exam is not deleted, it should
remain in the exam table unchanged

Pass

A revision slot has been clicked to
show individual screen

All text and icon views that are not part of revision records
should be removed, and module, title, date, start time and end
time will remain, all showing the selected revision’s
information. It should show a collapsing toolbar layout
whereby the module and title are in the toolbar, and it is of the
colour of the revision.

Pass

A free revision slot has been
clicked to show individual screen

As above, but the title should read Free Revision Slot and the
colour of the collapsing toolbar should be black. It should also
inform the user of what a free revision slot is and what their
options are.

Pass

Edit revision is clicked A screen for edit revision should be displayed and all the
entries pre-filled with the selected revision

Pass

A revision block has been edited The revision table in the database should update the selected
record with the newly entered fields. It should return to the
individual item screen showing the recently made changes

Pass

A revision block has not been
edited

The revision table in the database should not be updated.
When returning to the individual item screen, it should remain
the same as before with no changes

Pass

A revision block is deleted A dialog should appear asking to confirm whether or not to
delete the revision. When the revision is deleted, it should be
removed from the revision table in the database

Pass

A revision block is not deleted A dialog should appear asking to confirm whether or not to
delete the revision. When the revision is not deleted, it should
remain in the revision table unchanged

Pass

Main Activity

The application is loaded and it’s
the first-time boot

On first boot the app should automatically show the initial
start-up welcome screens to guide the user through setup.
After this setup is complete, it should show the user a dialog

Pass

Russell Waterson 1330057

70 | P a g e

explaining the navigation of the system. The app should then
be loaded as normal (as below).

The application is loaded The app is loaded showing the default tab of the timetable
view. There should be the bottom navigation view allowing for
transitions to timetable, exams, classes, and activities screens.
There should also be access to a side navigation view granting
access to smart calendar data, import google calendar,
settings, and backup screens, as well as showing the user’s
name.

Pass

The application is loaded on the
day of an exam

When the app is loaded on the day of an exam in the system, a
dialog should be displayed wishing the user good luck and
explaining to them the revision that should be undertaken that
day.

Pass

Timetable tab is selected The timetable fragment will be displayed showing the last
clicked day/week/month view

Pass

Day view is selected from
timetable tab

The day view should be displayed showing the current day
along with all the events for that day

Pass

Week view is selected from
timetable tab

The week view should be displayed showing the current week
along with all the events for that week

Pass

Month view is selected from
timetable tab

The month view should be displayed showing the current
month along with the number of days until the user’s next
exam

Pass

Exam tab is selected The exam fragment should be displayed showing all the exams
entered into the system. Along with the number of upcoming
exams the user has.

Pass

Exam tab is selected when there
are no exams in the future in the
system

The exam fragment should be displayed showing all the exams
entered into the system. As well as showing the user having 0
upcoming exams

Pass

Class tab is selected The class fragment should be displayed showing all the classes
entered into the system.

Pass

Activity tab is selected The activity fragment should be displayed showing all the
activities entered into the system.

Pass

Side navigation is selected The side navigation draw should slide from the left to display
the menu

Pass

Smart Calendar Data is selected
from the side navigation bar

The smart calendar data activity should be started and
displayed

Pass

Import Google Calendar is
selected from the side navigation
bar

The import google calendar activity should be started and
displayed

Pass

Settings is selected from the side
navigation bar

The settings activity should be started and displayed Pass

Last Backup is selected from the
side navigation bar

The back activity should be started and displayed, the current
date and time will be taken and displayed as the last backup in
the side navigation bar

Pass

End Mute

Broadcast is received to start the
end mute

The phone should change from a silent ringer mode to a
normal ringer mode

Pass

Start Mute

Broadcast is received to start the
start mute

The phone should change from a normal ringer mode to a
silent ringer mode

Pass

Add Activity Activity

The add an activity screen is
clicked to add a new activity

The add activity screen should be displayed with the title in the
toolbar of “Add Activity” and all the fields should be displayed
as empty of default values. Activity (empty), Day (Monday),
Start Time (00:00), End Time (00:00), Repeat Weekly (Off), and
Colour (Light Blue).

Pass

Russell Waterson 1330057

71 | P a g e

The activity is edited When selected, the normal letter based keyboard is displayed
where the user can type words, numbers and symbols

Pass

The day is edited A dropdown containing every day of the week should be
displayed. When a day is clicked, it should show as the one
selected.

Pass

The start time is edited A time picker dialog should be displayed, when a time is picked
it should show as the selected time.

Pass

The end time is edited As above Pass

The repeat is edited The toggle should alternate between an off and on state Pass

The colour is edited A dialog should be displayed containing a list of a variety of
colours. When a colour is selected, the colour view should
change to the selected colour.

Pass

Save is clicked before any details
have been entered

The system should alert the user that the validation checks
have failed. In this case, it should fail for the activity name
being empty, and the end time not being allowed to be the
same or before the start time.

Pass

Save is clicked with all valid
details entered

The activity should be added to the system containing all the
previously entered data. The user should be notified that the
activity has been saved and the system should return to the
previous screen (activity tab or activity page during start-up)
showing the newly entered activity.

Pass

The add an activity screen is
clicked to edit an existing activity

The add activity screen should be displayed with the title in the
toolbar of “Edit Activity” and all the fields should be displayed
as the values of the selected activity.

Pass

Leave the edit screen without
confirming the edit

It should return to the previous screen and the selected activity
should be unchanged

Pass

Make changes and click edit
button

It should return to the previous screen, alert the user that the
edit has been made, and update the activity in the database
with the entered data.

Pass

Add Class Activity

The add a class screen is clicked
to add a new class

The add class screen should be displayed with the title in the
toolbar of “Add Class” and all the fields should be displayed as
empty of default values. Module (empty), Title (empty), Day
(Monday), Start Time (00:00), End Time (00:00), Repeat Weekly
(Off), Teacher (empty), Room (empty), and Colour (Light Blue).

Pass

The module is edited to be the
same as an existing module

When the user starts typing in the module, a dropdown should
appear containing a list of all the existing module already in the
system. When the user selects one of the modules, it should
then be displayed in the modules field, and the colour should
automatically change to match the colour previously entered
with that module.

Pass

The title is edited When selected, the normal letter based keyboard is displayed
where the user can type words, numbers and symbols

Pass

The day is edited A dropdown containing every day of the week should be
displayed. When a day is clicked, it should show as the one
selected.

Pass

The start time is edited A time picker dialog should be displayed, when a time is picked
it should show as the selected time.

Pass

The end time is edited As above Pass

The repeat is edited The toggle should alternate between an off and on state Pass

The teacher is edited When selected, the normal letter based keyboard is displayed
where the user can type words, numbers and symbols

Pass

The room is edited As above Pass

The colour is edited A dialog should be displayed containing a list of a variety of
colours. When a colour is selected, the colour view should
change to the selected colour.

Pass

Russell Waterson 1330057

72 | P a g e

Save is clicked before any details
have been entered

The system should alert the user that the validation checks
have failed. In this case, it should fail for the module and the
title being empty, and the end time not being allowed to be the
same or before the start time.

Pass

Save is clicked with all valid
details entered

The class should be added to the system containing all the
previously entered data. The user should be notified that the
class has been saved and the system should return to the
previous screen (class tab or class page during start-up)
showing the newly entered class.

Pass

The add a class screen is clicked
to edit an existing class

The add class screen should be displayed with the title in the
toolbar of “Edit Class” and all the fields should be displayed as
the values of the selected class.

Pass

Leave the edit screen without
confirming the edit

It should return to the previous screen and the selected class
should be unchanged.

Pass

Make changes and click edit
button

It should return to the previous screen, alert the user that the
edit has been made, and update the class in the database with
the entered data.

Pass

Add Exam Activity

The add an exam screen is clicked
to add a new exam

The add exam screen should be displayed with the title in the
toolbar of “Add Exam” and all the fields should be displayed as
empty of default values. Module (empty), Title (empty), Date
(00-00-0000), Start Time (00:00), Duration (empty), More Info
(empty), Colour (Light Blue), Content Size (empty), and Priority
(empty).

Pass

The module is edited to be the
same as an existing module

When the user starts typing in the module, a dropdown should
appear containing a list of all the existing module already in the
system. When the user selects one of the modules, it should
then be displayed in the modules field, and the colour should
automatically change to match the colour previously entered
with that module.

Pass

The title is edited When selected, the normal letter based keyboard is displayed
where the user can type words, numbers and symbols

Pass

The date is edited A date picker dialog should be displayed, when a date is picked
it should show as the newly selected date.

Pass

The start time is edited A time picker dialog should be displayed, when a time is picked
it should show as the selected time.

Pass

The duration is edited When selected, a number pad based keyboard is displayed
where the user can enter only positive whole numbers

Pass

More info is edited As when title is selected Pass

The colour is edited A dialog should be displayed containing a list of a variety of
colours. When a colour is selected, the colour view should
change to the selected colour.

Pass

Course content is edited As when duration is selected Pass

Priority is edited As when duration is selected Pass

Save is clicked before any details
have been entered

The system should alert the user that the validation checks
have failed. In this case, it should fail for the module and the
title being empty, the date being invalid, and the duration
being empty.

Pass

Save is clicked with all valid
details entered

The exam should be added to the system containing all the
previously entered data. The user should be notified that the
exam has been saved and the system should return to the
previous screen (exam tab or exam page during start-up)
showing the newly entered exam.

Pass

The add an exam screen is clicked
to edit an existing exam

The add exam screen should be displayed with the title in the
toolbar of “Edit Exam” and all the fields should be displayed as
the values of the selected exam.

Pass

Russell Waterson 1330057

73 | P a g e

Leave the edit screen without
confirming the edit

It should return to the previous screen and the selected exam
should be unchanged.

Pass

Make changes and click edit
button

It should return to the previous screen, alert the user that the
edit has been made, and update the exam in the database with
the entered data.

Pass

Edit Revision Activity

The edit a revision screen is
clicked to edit an existing revision

The edit revision screen should be displayed with the title in
the toolbar of “Edit Revision Block” and all the fields should be
displayed as the values of the selected revision.

Pass

The module is edited to be the
same as an existing module

When the user starts typing in the module, a dropdown should
appear containing a list of all the existing module already in the
system. When the user selects one of the modules, it should
then be displayed in the modules field, and the colour should
automatically change to match the colour previously entered
with that module.

Pass

The title is edited When selected, the normal letter based keyboard is displayed
where the user can type words, numbers and symbols

Pass

The date is edited A date picker dialog should be displayed, when a date is picked
it should show as the newly selected date.

Pass

The start time is edited A time picker dialog should be displayed, when a time is picked
it should show as the selected time.

Pass

The end time is edited As when start time is edited Pass

Notes is edited As when title is selected Pass

The colour is edited A dialog should be displayed containing a list of a variety of
colours. When a colour is selected, the colour view should
change to the selected colour.

Pass

Edit is clicked after all the details
have been removed

The system should alert the user that the validation checks
have failed. In this case, it should fail for the module and the
title being empty, the date being invalid, and the end time not
being allowed to be the same or before the start time.

Pass

Leave the edit screen without
confirming the edit

It should return to the previous screen and the selected
revision should be unchanged.

Pass

Make changes and click edit
button once all entries are valid

It should return to the previous screen, alert the user that the
edit has been made, and update the revision in the database
with the entered data.

Pass

Setting Activity

Mute phone is switched on The user should be informed that the scheduled muting is
being setup, and the system should then setup the start of the
mute at the preferred revision start time, and the end of the
mute at the preferred revision end time.

Pass

Mute phone is switched off The phone should be unmuted and the start of the mute and
the end of the mute broadcasts should be cancelled.

Pass

Rerun Initial Setup The original start-up welcome screens should be displayed
however showing all the data already in the system.

Pass

Contact Me A list of installed email clients should be displayed, once one is
clicked an email should be drafted with my email is the
recipient and “Smart Revision Calendar” as the subject.

Pass

Contact Me, when an email client
is not installed

A message should be displayed informing the user than an
email client is not currently installed.

Pass

Changelog A dialog should be displayed showing the user of the dates and
changelog of the last updates.

Pass

About A dialog should be displayed informing the user of what the
project is about, as well as a disclaimer.

Pass

Smart Calendar Data Activity

Smart Calendar Active toggle
activated

The toggle should switch to the on position, and revision slots
should now be able to be generated

Pass

Russell Waterson 1330057

74 | P a g e

Smart Calendar Active toggle
deactivate

The toggle should switch to the off position, and all the revision
currently in the system should be removed

Pass

Generate smart revision when
smart features are not active

An error message should be displayed informing the user that
smart features are active

Pass

Generate smart revision when
there are no exams in the system

An error message should be displayed informing the user that
there are no exams in the system

Pass

Generate smart revision when
the revision block size is 0

An error message should be displayed informing the user that
the revision block size is 0

Pass

Generate smart revision for the
first time

Revision slots should be generated whilst a progress dialog is
displayed, then a dialog informing the user should be displayed
once complete

Pass

Generate smart revision for a
subsequent time

Revision slots should be generated whilst a progress dialog is
displayed, then a dialog giving the user the option to view the
difference, keep the old revision, or to keep the new revision is
displayed

Pass

Generate smart revision for a
subsequent time and keep old is
selected

As above, and the newly generated revision should be deleted Pass

Generate smart revision for a
subsequent time and keep new is
selected

As above, and the old revision should be deleted Pass

Generate smart revision for a
subsequent time and view diff is
selected

As above, then the New Revision Difference activity is started Pass

Recommend smart data updates
when no debriefs have taken
place

An error message should be displayed informing the user that
no debriefs have taken place

Pass

Recommend smart data updates A dialog should be displayed containing recommended smart
data updates, as well as a description of how it has been
generated

Pass

Recommend smart data updates
then decline to change the data

As above, then no change in data takes place Pass

Recommend smart data updates
then accept the data change

As above, then all learning style smart data will be replaced by
the suggested values

Pass

Recommend smart data updates
then accept the data change
when there is invalid data

As above, then an error message should be displayed informing
the user that the data includes invalid values

Pass

Change the preferred start time A TimePicker dialog should be displayed, then the start time
should be changed to the newly selected time

Pass

Change the preferred start time
to after the current end time

A TimePicker dialog should be displayed, then an error
message should be displayed informing the user that the
selected time is invalid, the start time will remain as the
previous value

Pass

Change the preferred end time A TimePicker dialog should be displayed, then the end time
should be changed to the newly selected time

Pass

Change the preferred end time to
before the current start time

A TimePicker dialog should be displayed, then an error
message should be displayed informing the user that the
selected time is invalid, the end time will remain as the
previous value

Pass

Activate end of block debriefs The notification alarms should be set and therefore block
debriefs activated

FAIL:
un-
imple-
ment-
ed

Deactivate end of block debriefs The notification alarms should be cancelled and therefore
block debriefs deactivated

Activate end of day debriefs The notification alarms should be set and therefore day
debriefs activated

Pass

Russell Waterson 1330057

75 | P a g e

Deactivate end of day debriefs The notification alarms should be cancelled and therefore day
debriefs deactivated

Pass

Change the revision block size A preference dialog should be displayed, then revision size
should change to become the entered value

Pass

Change the revision block size to
be less than the minimum value

A preference dialog should be displayed, an error message
should be displayed informing the user that the entered value
is too small

Pass

Change the revision block size to
be more than the maximum
value

A preference dialog should be displayed, an error message
should be displayed informing the user that the entered value
is too large

Pass

Change the break block size A preference dialog should be displayed, then break size should
change to become the entered value

Pass

Change the break block size to be
more than the maximum value

A preference dialog should be displayed, an error message
should be displayed informing the user that the entered value
is too large

Pass

Change the revision variety A dialog should be displayed containing options 0 to 10, the
variety should then be updated to match the value of the
selected option

Pass

Create Revision Blocks

Attempt multiple generation of
revision using a vast array of
different learning style data, and
different exams containing a
range of priorities, as well as a
number of different other items
existing

Revision should be generated up to the last exam in the
system, within the start time and end time, and avoiding all
classes, activities, and events, where revision is set correctly
according to priority, content size, days till exam, and variety

Pass

New Revision Diff

View the difference between old
and new revision

An exam revision counter should be displayed, followed by a
day-to-day account of what revision is present, where old is on
the left and new is on the right

Pass

Choose to keep the old revision All the newly generated revision should be deleted from the
revision database, and the old remains

Pass

Choose to keep the newly
generated revision

All the previously existing old revision should be deleted from
the revision database, and the new remains

Pass

Step Fragment

The initial welcome setup is
displayed

The system should show the first step in the welcome setup. Pass

Next is pressed on steps 1 to 8 The next step should be displayed. Pass

Back is pressed on steps 2 to 9 The previous step should be displayed. Pass

Complete is pressed on step 9 The system should alert the user that the setup is complete
and close the start-up activity.

Pass

Step 1 is displayed The first step should be displayed, showing a welcome
message, a disclaimer, and a text box so the user can enter
their name.

Pass

Step 1 is displayed with
previously entered data

The first step should be displayed, showing the name text box
containing the previously entered data.

Pass

Step 2 is displayed The second step should be displayed informing the user about
classes, and button to add new classes.

Pass

Step 2 is displayed after a new
class has been added

The second step should be displayed showing the newly added
class at the end of the list of existing classes.

Pass

Step 2 is displayed with
previously entered data

The second step should be displayed showing a list of
previously entered classes in the system.

Pass

Step 3 is displayed The third step should be displayed informing the user about
activities, and button to add new activities.

Pass

Step 3 is displayed after a new
activity has been added

The third step should be displayed showing the newly added
activity at the end of the list of existing activities.

Pass

Russell Waterson 1330057

76 | P a g e

Step 3 is displayed with
previously entered data

The third step should be displayed showing a list of previously
entered activities in the system.

Pass

Step 4 is displayed The forth step should be displayed informing the user about
connecting their Google Calendar, as well as a button to
connect it.

Pass

Step 5 is displayed The fifth step should be displayed informing the user about the
cloud backup functionality available

Pass

Step 6 is displayed The sixth step should be displayed informing the user all about
the smart revision calendar features

Pass

Step 7 is displayed The seventh step should be displayed informing the user about
exam, and button to add new exams.

Pass

Step 7 is displayed after a new
exam has been added

The seventh step should be displayed showing the newly added
exam at the end of the list of existing exams.

Pass

Step 7 is displayed with
previously entered data

The seventh step should be displayed showing a list of
previously entered exams in the system.

Pass

Step 8 is displayed The eighth step should be displayed informing the user about
learning styles, as well as all the input for the user to enter
their learning style.

Pass

Step 8 is displayed with
previously entered data

The eighth step should be displayed showing all the previously
entered learning style inputs

Pass

In step 8 the start time is edited A time picker dialog should be displayed, when a time is picked
it should show as the selected time.

Pass

In step 8 the start time is edited
to be after the end time

A time picker dialog should be displayed, when a time after the
current end time is selected, an alert should be displayed
informing the user that they cannot select that time.

Pass

In step 8 the end time is edited As with start time Pass

In step 8 the end time is edited to
be before the start time

As with start time Pass

In step 8 the revision block
preferred time is edited

A dialog should be displayed where the user can enter a
positive number. When entered, it should be shown as the new
revision time.

Pass

In step 8 the revision block is
edited to be outside the accepted
time

A dialog should be displayed where the user can enter a
positive number. When a number outside the range of 15 and
360 minutes is entered, an alert should show explaining the
entry was invalid

Pass

In step 8 the break block is edited As with revision time Pass

In step 8 the break block is edited
to be outside the accepted time

As with revision time, but with value greater than 240 minutes Pass

In step 8 the break block is edited
to be greater than the revision
block

A dialog should be displayed where the user can enter a
positive number. When entered, it should be shown as the new
break time, but also alerting the user that the entered time is
greater than the revision time and it is not a good idea.

Pass

In step 8 the variety is edited The slider should change the value displayed dynamically, and
on release save the chosen value.

Pass

Step 9 is displayed The ninth and final step should be displayed informing the user
about debriefs, as well as checkboxes for enable them.

Pass

Step 9 is displayed with
previously entered data

The ninth step should be displayed with the checkboxes
selected on not depending on existing data.

Pass

In step 9 the daily debrief is
activated

The system should setup the daily notification at the preferred
end time of revision, which should take the user to the daily
debrief screen

Pass

In step 9 the daily debrief is
deactivated

The system should cancel the daily notification from showing Pass

Stepper Activity

Back nav button pressed The system should transition to the previous screen in the list
of steps

Pass

Russell Waterson 1330057

77 | P a g e

Back nav button pressed on the
first step

The system should remain on the current step Pass

Complete pressed The system should alert the user that the setup is complete
and close the start-up activity

Pass

Day Timetable Events

Class added The system should add the class to the day view timetable Pass

Activity added The system should add the activity to the day view timetable Pass

Exam added The system should add the exam to the day view timetable Pass

Revision added The system should add the revision to the day view timetable Pass

Event added The system should add the event to the day view timetable Pass

Day Timetable Fragment

Change current date The system should change the date that is displayed when
scrolled left and right

Pass

Change current time The system should change the time that is displayed when
scrolled up and down

Pass

Click on an activity The individual item screen should be displayed showing the
pressed activity

Pass

Click on a class The individual item screen should be displayed showing the
pressed class

Pass

Click on an exam The individual item screen should be displayed showing the
pressed exam

Pass

Click on a revision slot The individual item screen should be displayed showing the
pressed revision

Pass

Click on a Google Calendar event The individual item screen should be displayed showing the
pressed event

Pass

Month Timetable Fragment

View month view with an exam in
the future

The system should display the month view along with the
number of days until the next exam

Pass

View month view with no exams
in the future

The system should display the month view along with a
message explain there are no upcoming exams

Pass

View month view with no exams
in the system

The system should display the month view along with a
message explain there are no upcoming exams

Pass

Week Timetable Events

Class added The system should add the class to the week view timetable Pass

Activity added The system should add the activity to the week view timetable Pass

Exam added The system should add the exam to the week view timetable Pass

Revision added The system should add the revision to the week view timetable Pass

Event added The system should add the event to the week view timetable Pass

Week Timetable Fragment

Change current week The system should change the week that is displayed when
scrolled left and right

Pass

Change current time The system should change the time that is displayed when
scrolled up and down

Pass

Click on an activity The individual item screen should be displayed showing the
pressed activity

Pass

Click on a class The individual item screen should be displayed showing the
pressed class

Pass

Click on an exam The individual item screen should be displayed showing the
pressed exam

Pass

Click on a revision slot The individual item screen should be displayed showing the
pressed revision

Pass

Click on a Google Calendar event The individual item screen should be displayed showing the
pressed event

Pass

